Rd Sharma 2022 Solutions for Class 9 Maths Chapter 2 Exponents Of Real Numbers are provided here with simple step-by-step explanations. These solutions for Exponents Of Real Numbers are extremely popular among Class 9 students for Maths Exponents Of Real Numbers Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rd Sharma 2022 Book of Class 9 Maths Chapter 2 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rd Sharma 2022 Solutions. All Rd Sharma 2022 Solutions for class Class 9 Maths are prepared by experts and are 100% accurate.

Page No 42:

Question 1:

Simplify the following:

(i) 3a4b310×5a2b23

(ii) 2x-2y33

(iii) 4×1076×10-58×104

(iv) 4ab2-5ab310a2b2

(v) x2y2a2b3n

(vi) a3n-96a2n-4

Answer:

(i)
3a4b310×5a2b23=3×a40×b30×5×a6×b6=15×a40×a6×b30×b6=15×a40+6×b30+6              am×an=am+n=15a46b36

(ii)
2x-2y33=23×x-23×y33=8×x-6×y9=8x-6y9

(iii)
4×1076×10-58×104=4×107×6×10-58×104=24×107+-58×104=24×1028×104
=24×102×10-48=3×102+-4=3×10-2=3100

(iv)
4ab2-5ab310a2b2=4×a×b2×-5×a×b310a2b2=-20×a1×a1×b2×b310a2b2
=-20×a1+1×b2+310a2b2=-2×a2×b5×a-2×b-2=-2×a2+-2×b5+-2=-2×a0×b3=-2b3

(v)
x2y2a2b3n=x2ny2na2nb3n=x2ny2na2nb3n

(vi)
a3n-96a2n-4=a63n-9a2n-4=a18n-54a2n-4
=a18n-54×a-2n-4=a18n-54×a-2n+4=a18n-54-2n+4=a16n-50

Page No 42:

Question 2:

If a=3 and b=-2, find the values of:
(i) aa+bb
(ii) ab+ba
(iii) a+bab

Answer:

(i) aa+bb
Here, a=3 and b=-2.
Put the values in the expression aa+bb.
33+-2-2=27+1-22=27+14=108+14=1094

(ii) ab+ba
Here, a=3 and b=-2.
Put the values in the expression ab+ba.
3-2+-23=132+-8=19-8=1-729=-719

(iii) a+bab
Here, a=3 and b=-2.
Put the values in the expression a+bab.
3+-23-2=1-6=1

Page No 42:

Question 3:

If x, y, a, b are positive real numbers, prove that:

(i) xaxbc×xbxca×xcxab=1

(ii) 11+xa-b+11+xb-a=1

Answer:


(i)
xaxbc×xbxca×xcxab=xa-bc×xb-ca×xc-ab      aman=am-n, a0=xa-bc×xb-ca×xc-ab        amn=amn=xac-bc×xab-ac×xbc-ab=xac-bc+ab-ac+bc-ab              am×an=am+n=x0=1            a0=1, a0

(ii)
11+xa-b+11+xb-a=11+xaxb+11+xbxa         aman=am-n, a0=1xb+xaxb+1xa+xbxa=xbxa+xb+xaxa+xb=xa+xbxa+xb=1

Page No 42:

Question 4:

Solve the following equations for x:

(i) 72x+3=1

(ii) 2x+1=4x-3

(iii) 25x+3=8x+3

(iv) 42x=132

(v) 23x-7=256

Answer:

(i)
72x+3=172x+3=702x+3=02x=-3x=-32

(ii)
2x+1=4x-32x+1=22x-32x+1=22x-6x+1=2x-6x=7

(iii)
25x+3=8x+325x+3=23x+325x+3=23x+95x+3=3x+92x=6x=3

(iv)
42x=132222x=12524x×25=124x+5=204x+5=0x=-54

(v)
23x-7=25623x-7=283x-7=83x=15x=5

Page No 42:

Question 5:

Prove that:

(i) a+b+ca-1b-1+b-1c-1+c-1a-1=abc

(ii) a-1+b-1-1=aba+b

(iii) xaxba2+ab+b2×xbxcb2+bc+c2×xcxac2+ca+a2=1

Answer:

(i) Consider the left hand side:
a+b+ca-1b-1+b-1c-1+c-1a-1=a+b+c1ab+1bc+1ca=a+b+cc+a+babc=a+b+c×abca+b+c=abc
Therefore left hand side is equal to the right hand side. Hence proved.

(ii)
Consider the left hand side:
a-1+b-1-1=1a-1+b-1=11a+1b=1b+aab=aba+b
Therefore left hand side is equal to the right hand side.
Hence proved.

(iii)
xaxba2+ab+b2×xbxcb2+bc+c2×xcxac2+ca+a2=xa-ba2+ab+b2×xb-cb2+bc+b2×xc-ac2+ca+a2=xa-ba2+ab+b2×xb-cb2+bc+c2×xc-ac2+ca+a2=xa3-b3+b3-c3+c3-a3=x0=1

Hence proved.

Page No 42:

Question 6:

Simplify the following:

(i) 3n×9n+13n-1×9n-1

(ii) 5×25n+1-25×52n5×52n+3-25n+1

(iii) 5n+3-6×5n+19×5x-22×5n

(iv) 68n+1+1623n-21023n+1-78n

Answer:

(i)
3n×9n+13n-1×9n-1=3n×32n+13n-1×32n-1=3n×32n+23n-1×32n-2
=3n+2n+23n-1+2n-2=33n+233n-3=33n+2-3n+3=35=243

(ii)
5×25n+1-25×52n5×52n+3-25n+1=5×52n+1-52×52n5×52n+3-52n+1=5×52n+2-52×52n5×52n+3-52n+2=51+2n+2-52+2n51+2n+3-52n+2
=52n+3-52+2n52n+4-52n+2=52+2n5-152n+252-1=424=16

(iii)
5n+3-6×5n+19×5n-22×5n=5n+152-65n9-22=5n×5×25-65n9-4=5×195=19

(iv)
68n+1+1623n-21023n+1-78n=623n+1+1623n-21023n+1-723n=623n+3+1623n-21023n+1-723n
=6×23n23+1623n2-21023n21-723n=23n48+423n20-7=5213=4

Page No 42:

Question 7:

Solve the following equations for x:

(i) 22x-2x+3+24=0

(ii) 32x+4+1=2.3x+2

(iii) 4x-1×0.53-2x=18x

Answer:

(i)
22x-2x+3+24=02x2-2x×23+222=02x2-2×2x×22+222=02x-222=02x-22=02x=22x=2

(ii)
32x+4+1=2.3x+23x+22-2.3x+2+1=03x+2-12=03x+2-1=03x+2=1=30x+2=0x=-2

(iii)
4x-1×0.53-2x=18x22x-1×123-2x=123x22x-2×22x-3=2-3x22x-2+2x-3=2-3x24x-5=2-3x4x-5=-3xx=57

Page No 42:

Question 8:

If 49392=a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.

Answer:

First find out the prime factorisation of 49392.

2493922246962123482617433087310297343749771

It can be observed that 49392 can be written as 24×32×73, where 2, 3 and 7 are positive primes.
49392=243273=a4b2c3a=2, b=3, c=7

Page No 42:

Question 9:

If 1176=2a3b7c, find a, b and c.

Answer:

First find out the prime factorisation of 1176.
21176258822943147749771

It can be observed that 1176 can be written as 23×31×72.
1176=233172=2a3b7c
Hence, a = 3, b = 1 and c = 2.

Page No 42:

Question 10:

Given 4725=3a5b7c, find
(i) the integral values of a, b and c
(ii) the value of 2-a3b7c

Answer:

(i) Given 4725=3a5b7c
First find out the prime factorisation of 4725.
347253157535255175535771
It can be observed that 4725 can be written as 33×52×71.
4725=3a5b7c=335271
Hence, a = 3, b = 2 and c = 1.

(ii)
When a = 3, b = 2 and c = 1,
2-a3b7c=2-3×32×71=18×9×7=638
Hence, the value of 2-a3b7c is 638.

Page No 42:

Question 11:

If a=xyp-1,b=xyq-1 and c=xyr-1, prove that aq-rbr-pcp-q=1.

Answer:

It is given that a=xyp-1,b=xyq-1 and c=xyr-1.
aq-rbr-pcp-q=xyp-1q-rxyq-1r-pxyr-1p-q=xq-ryp-1q-rxr-pyr-pq-1xp-qyp-qr-1=xq-rxr-pxp-qyp-1q-ryr-pq-1yp-qr-1=xq-r+r-p+p-qyp-1q-r+r-pq-1+p-qr-1=xq-r+r-p+p-qypq-q-pr+r+rq-r-pq+p+pr-p-qr+q=x0y0=1



Page No 53:

Question 1:

Simplify:

(i) (16-1/5)5/2

(ii) 32-35

(iii) (343)-23

(iv) (0.001)1/3

(v) 5813+2713314

(vi) 258 ÷ 2513

(vii) 5-1×7252×7-47/2 × 5-2×7353×7-5-5/2

(viii) 64-136413-6423

(ix) 13+23+3312

Answer:

(i) Given 16-1552

By using law of rational exponents we have

Hence, the value of is.
(ii) 
32-35

=13235=13235=12535=125×35
=123=18

(iii) Given (343)-23

Hence, the value of is.

(iv) Given (0.001)13

Hence, the value of (0.001)13 is.

(v) Given 5813+2713314

5813+2713314=52313+3313314=52+3314=55314=5414=54×14=5

Hence the value of 5813+2713314 is 5.

(vi) Given 258 ÷ 2513.

By using the law of rational exponents

Hence the value of is

(vii) Given 5-1×7252×7-47/2 × 5-2×7353×7-5-5/2.

Hence, the value of 5-1×7252×7-47/2 × 5-2×7353×7-5-5/2 is .

(viii)

64-13 6413-6423=(43)-13 (43)13-(43)23=43×-13    43×13-43×23=14[4-16]=-124=-3

(ix)
13+23+3312=1+8+27=36=62×12      amn=amn=6
 

Page No 53:

Question 2:

Show that:

(i) xa-ba+bxb-cb+cxc-ac+a=1

(ii) 3a3ba+b3b3cb+c3c3ac+a=1

Answer:

(i)
11+xa-b+11+xb-a
=11+xaxb+11+xbxa=xbxb+xa+xaxa+xb=xb+xaxa+xb=1

(ii)
3a3ba+b3b3cb+c3c3ac+a=3a-ba+b3b-cb+c3c-ac+a=3a2-b2+b2-c2+c2-a2=30=1

Page No 53:

Question 3:

If 27x =93x,  find x.

Answer:

We are given. We have to find the value of

Since

By using the law of exponents we get, 

On equating the exponents we get,

Hence,

Page No 53:

Question 4:

Find the values of x in each of the following:

(i) 25x÷2x =2205

(ii) (23)4=(22)x

(iii) 35x 532x=12527

(iv) 5x-2×32x-3 =135

(v) 2x-7×5x-4=1250

(vi) 432x+12=132

(vii) 52x+3=1

(viii) 13x=44-34-6

(ix) 35x+1=12527

Answer:

From the following we have to find the value of x

(i) Given

By using rational exponents

On equating the exponents we get,

The value of x is

(ii) Given

On equating the exponents 

Hence the value of x is

(iii) Given

Comparing exponents we have,

Hence the value of x is

(iv) Given

On equating the exponents of 5 and 3 we get,

And,

The value of x is

(v) Given

On equating the exponents we get 

And, 

Hence the value of x is

(vi) 
432x+12=132

22134x+12=12524x+13=2-5

On comparing we get, 
4x+13=-54x+1=-154x=-16x=-4

(vii) 52x+3=1

52x+3=502x+3=0x=-32

(viii) 13x=44-34-6

13x=224-34-613x=28-34-613x=256-81-613x=16913x=132

On comparing we get, 
x=2on squaring both sides we get, x=4

(ix) 35x+1=12527
35x+1=53335x+12=35-3

On comparing we get, 

x+12=-3x+1=-6x=-7

Page No 53:

Question 5:

If x=213+223, show that x3 – 6x = 6.

Answer:

 x=213+223
Cubing on both sides, we get
x3=213+2233x3=2133+2233+3×213×223213+223x3=2+22+3×21+23xx3=2+4+3×2xx3-6x=6

Page No 53:

Question 6:

Determine  8xx, if 9x+2=240+9x.

Answer:

9x+2=240+9x
9x×92=240+9x9x92-1=2409x81-1=2409x×80=2409x=332x=312x=1x=12
 8xx=8×1212=412=2

Page No 53:

Question 7:

If 3x+1=9x-2, find the value of 21+x.

Answer:

 3x+1=9x-2
3x×3=9x923x×3=32x322=32x3434×3=32x3x35=32x-x
35=3x
Comparing both sides, we get
x = 5
So, 21+x=21+5=26=64

Page No 53:

Question 8:

If 34x=81-1 and 101y=0.0001, find the value of 2-x+4y.

Answer:

It is given that 34x=81-1 and 101y=0.0001.
Now,
34x=81-134x=34-13x4=3-14x=-1
And,
101y=0.0001101y=110000101y=1104101y=10-41y=-4y=-14
Therefore, the value of 2-x+4y is 21+4-14=20=1.

Page No 53:

Question 9:

If 53x=125 and 10y=0.001, find x and y.

Answer:

It is given that 53x=125 and 10y=0.001.
Now,
53x=12553x=533x=3x=1
And,
10y=0.00110y=1100010y=10-3y=-3
Hence, the values of x and y are 1 and −3, respectively.

Page No 53:

Question 10:

Solve the following equations:
(i) 3x+1=27×34
(ii) 42x=163-6y=82
(iii) 3x-1×52y-3=225
(iv) 8x+1=16y+2 and, 123+x=143y
(v) 4x-1×0.53-2x=18x

(vi) ab=ba1-2x, where a and b are distinct primes

Answer:

(i)
3x+1=27×343x+1=33×343x+1=33+43x+1=37x+1=7x=6

(ii)
42x=163-6y=8242x=82 and 163-6y=8242x=812×2 and 1613×-6y=812×2 42x=8 and 16-2y=824x=23 and 2-8y=234x=3 and -8y=3x=34 and y=-83

(iii)
3x-1×52y-3=2253x-1×52y-3=3×3×5×53x-1×52y-3=32×52x-1=2 and 2y-3=2x=3 and y=52

(iv)
8x+1=16y+2 and, 123+x=143y23x+1=24y+2 and 123+x=1223y23x+3=24y+8 and 123+x=126y3x+3=4y+8 and 3+x=6y
Now,
3+x=6yx=6y-3
Putting x = 6y − 3 in 3x-4y=5, we get
36y-3-4y=518y-9-4y=514y=14y=1
Putting y = 1 in x=6y-3, we get
x=6×1-3=3

(v)
4x-1×0.53-2x=18x22x-1×123-2x=123x22x-2×2-3-2x=2-3x22x-2-3+2x=2-3x4x-5=-3x7x=5x=57

(vi)
ab=ba1-2xab12=ab-1-2x12=-1-2x12=2x-132=2xx=34

Page No 53:

Question 11:

If 2x×3y×5z=2160, find x , y and z. Hence, compute the value of 3x×2-y×5-z.

Answer:

Given: 2x×3y×5z=2160
First, find out the prime factorisation of 2160.
2216021080254022703135345315551
It can be observed that 2160 can be written as 24×33×51.
Also,
2x×3y×5z=24×33×51x=4, y=3, z=1
Therefore, the value of 3x×2-y×5-z is 34×2-3×5-1=81×18×15=8140.

Page No 53:

Question 12:

If 1176=2a×3b×7c, find the values of a, b and c. Hence, compute the value of 2a×3b×7-c as a fraction.

Answer:

First find the prime factorisation of 1176.
21176258822943147749771
It can be observed that 1176 can be written as 23×31×72.
1176=2a3b7c=233172
So, a = 3, b = 1 and c = 2.
Therefore, the value of 2a×3b×7-c  is 23×31×7-2=8×3×149=2449



Page No 54:

Question 13:

Assuming that x, y, z are positive real numbers, simplify each of the following:

(i) x-35

(ii) x3 y-2

(iii) 243 x10y5z105

(iv) x-4y-105/4

(v) 235672

Answer:

We have to simplify the following, assuming thatare positive real numbers

(i) Given

As x is positive real number then we have

Hence the simplified value of is.

(ii) Given

As x and y are positive real numbers then we can write 

By using law of rational exponents we have 

Hence the simplified value of is .

(iii) Given 243 x10y5z105

243 x10y5z105=243 x10y5z1015=35 x10y5z1015=3515x1015y515z1015=35×15×x10×15×y5×15×z10×15=3x2yz2

Hence, the value of 243 x10y5z105 is 3x2yz2.

(iv) Given x-4y-105/4

x-4y-105/4=y10x45/4=y105/4x45/4=y10×54x4×54=y252x5

Hence, the value of x-4y-105/4 is y252x5.

(v) 235672

235672=232+2+1672=232×232×231×672=23×23×231×672
=23×23×231×672=162493=5127203=512720312

Page No 54:

Question 14:

Prove that:

(i) 3×5-3 ÷ 3-13 5×3×566=35

(ii) 93/2-3×50-181-1/2 = 15

(iii) 14-2-3×82/3×40+916-1/2 = 163

(iv) 21/2×31/3×41/410-1/5×53/5 ÷ 34/3×5-7/54-3/5×6=10

(v) 14 +(0.01)-1/2-(27)2/3 =32

(vi) 2n + 2n -12n+1-2n=32

(vii) 64125-2/3 + 12566251/4 + 25643 = 6516

(viii) 3-3×62×9852×1/253×(15)-4/3×31/3=282

(ix) (0.6)0-(0.1)-138-1323+-13-1=-32

Answer:

(i) We have to prove that

By using rational exponent we get,

Hence,

(ii) We have to prove that. So,

Hence,

(iii) We have to prove that

Now,

Hence,

(iv) We have to prove that. So,

Let

Hence,

(v) We have to prove that

Let

 

Hence,

(vi) We have to prove that . So,

Let

Hence,

(vii) We have to prove that. So let

By taking least common factor we get 

 

Hence,

(viii) We have to prove that. So,

Let

Hence,

(ix) We have to prove that. So,

Let

Hence,

Page No 54:

Question 15:

If x, y, z are positive real numbers, prove that:

(i) 11+xa-b+11+xb-a=1

(ii) xaa-bxaa+b÷xbb-axbb+aa+b=1

(iii) x1a-b1a-cx1b-c1b-ax1c-a1c-b=1

(iv) xa-a-11a-1aa+1=x

(v) ax+1ay+1x+yay+2az+2y+zaz+3ax+3z+x=1

(vi) xa2+b2xaba+bxb2+c2xbcb+cxc2+a2xaca+c=x2a3+b3+c3

Answer:


(i)
11+xa-b+11+xb-a=11+xaxb+11+xbxa         aman=am-n, a0=1xb+xaxb+1xa+xbxa=xbxa+xb+xaxa+xb=xa+xbxa+xb=1

(ii)
xaa-bxaa+b÷xbb-axbb+aa+b=xaa-bxaa+b×xbb+axbb-aa+b=xa2-abxa2+ab×xb2+abxb2-aba+b
=xa2-ab-a2-ab×xb2+ab-b2+aba+b=x-2ab×x2aba+b=x-2ab+2aba+b=x0a+b=1

(iii)
x1a-b1a-cx1b-c1b-ax1c-a1c-b=x1a-b×1a-cx1b-c×1b-ax1c-a×1c-b=x1a-b×1a-c+1b-c×1b-a+1c-a×1c-b=xb-c-a-c+a-ba-ba-cb-c=x0=1

(iv)
xa-a-11a-1aa+1=xa-1a1a-1×aa+1=xa2-1aaa2-1=xa2-1a×aa2-1=x1=x

(v)
ax+1ay+1x+yay+2az+2y+zaz+3ax+3z+x=ax+1-y-1x+yay+2-z-2y+zaz+3-x-3z+x=ax-yx+yay-zy+zaz-xz+x=ax2-y2+y2-z2+z2-x2=a0=1

(vi)
xa2+b2xaba+bxb2+c2xbcb+cxc2+a2xaca+c=xa2+b2-aba+bxb2+c2-bcb+cxc2+a2-aca+c=xa+ba2+b2-abxb+cb2+c2-bcxa+cc2+a2-ac=xa3+b3xb3+c3xa3+c3=x2a3+b3+c3

Page No 54:

Question 16:

If 2x=3y=12z, show that 1z=1y+2x.

Answer:

Let 2x=3y=12z=k
2=k1x,3=k1y,12=k1z
Now,
12=k1z22×3=k1zk1x2×k1y=k1zk2x+1y=k1z2x+1y=1z

Page No 54:

Question 17:

If 2x=3y=6-z, show that 1x+1y+1z=0.

Answer:

 Let 2x=3y=6-z=k
2=k1x, 3=k1y,6=k1-z
Now,
6=2×3=k1-zk1x×k1y=k1-zk1x+1y=k1-z1x+1y=1-z1x+1y+1z=0

Page No 54:

Question 18:

If ax = by = cz and b2 = ac, then show that y=2zxz+x.

Answer:

Let ax=by=cz=k
So, a=k1x,b=k1y,c=k1z
Thus, 
b2=ack1y2=k1xk1zk2y=k1x+1z2y=1x+1z
2y=z+xxzy=2zxz+x

Page No 54:

Question 19:

If 3x = 5y = (75)z, show that z=xy2x+y.

Answer:

Let 3x=5y=75z=k
3=k1x, 5=k1y, 75=k1z52×3=k1zk1y2×k1x=k1zk2y×k1x=k1z
k2y+1x=k1z2y+1x=1z2x+yxy=1zz=xy2x+y



Page No 55:

Question 20:

If a and b are distinct primes such that a6b-43=axb2y, find x and y.

Answer:

Given: a6b-43=axb2y
a6b-43=axb2ya6b-413=axb2ya6×13b-4×13=axb2ya2b-43=axb2yx=2  and y=-23

Page No 55:

Question 21:

If a and b are different positive primes such that

(i) a-1b2a2b-47÷a3b-5a-2b3=axby, find x and y.

(ii) a+b-1a-1+b-1=axby, find x + y + 2.

Answer:

(i)
a-1b2a2b-47÷a3b-5a-2b3=axbya-7b14a14b-28÷a3b-5a-2b3=axbya-7-14b14+28÷a3+2b-5-3=axbya-21b42÷a5b-8=axbya-21-5b42+8=axbya-26b50=axbyx=-26  and  y=50

(ii)
a+b-1a-1+b-1=axby1a+b1a+1b=axby1a+ba+bab=axby1ab=axbyab-1=axbya-1b-1=axbyx=-1  and  y=-1
Therefore, the value of x + y + 2 is −1 −1 + 2 = 0.

Page No 55:

Question 22:

Simplify:

(i) xa+bxca-bxb+cxab-cxc+axbc-a

(ii) lmxlxm×mnxmxn×nlxnxl

Answer:

(i)
xa+bxca-bxb+cxab-cxc+axbc-a=xa+ba-bxca-bxb+cb-cxab-cxc+ac-axbc-a=xa+ba-bxca-bcxb+cb-cxab-acxc+ac-axbc-ab=xa2-b2xb2-c2xc2-a2xca-bc+ab-ac+bc-ab=xa2-b2+b2-c2+c2-a2xca-bc+ab-ac+bc-ab=x0x0=1

(ii)
xlxmlm×xmxnmn×xnxlnl=xlxm1ml×xmxn1mn×xnxl1nl=xl-m1ml×xm-n1mn×xn-l1nl=xl-mml×xm-nmn×xn-lnl=xl-mml+m-nmn+n-lnl=xln-mn+lm-nl+nm-lmnml=x0=1

Page No 55:

Question 23:

Show that: a+1bm×a-1bnb+1am×b-1an=abm+n

Answer:


a+1bm×a-1bnb+1am×b-1an=ab+1bm×ab-1bnab+1am×ab-1an=ab+1bab+1am×ab-1bab-1an=ab+1b×aab+1m×ab-1b×aab-1n=abm×abn=abm×abn=abm+n

Page No 55:

Question 24:

(i) If a=xm+nyl, b=xn+lym and c=xl+myn, prove that am-nbn-lcl-m=1.

(ii) If x=am+n, y=an+l and z=al+m, prove that xmynzl=xnylzm.

Answer:

(i) Given: a=xm+nyl, b=xn+lym and c=xl+myn
Putting the values of a, b and c in am-nbn-lcl-m, we get
am-nbn-lcl-m=xm+nylm-nxn+lymn-lxl+mynl-m=xm+nm-nylm-nxn+ln-lymn-lxl+ml-mynl-m=xm2-n2xn2-l2xl2-m2ylm-lnymn-mlynl-nm=xm2-n2+n2-l2+l2-m2ylm-ln+mn-ml+nl-nm=x0y0=1

(ii) Given: x=am+n, y=an+l and z=al+m
Putting the values of x, y and z in xmynzl, we get
xmynzl=am+nman+lnal+ml=am2+nman2+lnal2+lm=am2+n2+l2+nm+ln+lm
Putting the values of x, y and z in xnylzm, we get
xnylzm=am+nnan+l lal+mm=amn+n2anl+l2 alm+m2=amn+n2+nl+l2+lm+m2
So, xmynzl = xnylzm



Page No 56:

Question 1:

Write 625-1/4 in decimal form.

Answer:

We have to writein decimal form. So,

625-14=162514=15414

Hence the decimal form of is

Page No 56:

Question 2:

State the product law of exponents.

Answer:

State the product law of exponents.

If is any real number and , are positive integers, then

By definition, we have 

(factor) ( factor)

to factors

Thus the exponent "product rule" tells us that, when multiplying two powers that have the same base, we can add the exponents. 

Page No 56:

Question 3:

State the quotient law of exponents.

Answer:

The quotient rule tells us that we can divide two powers with the same base by subtracting the exponents. If a is a non-zero real number and m, n are positive integers, then

We shall divide the proof into three parts 

(i) when

(ii) when

(iii) when

Case 1 

When

We have 

aman=a×a×a....to m factorsa×a×a....to n factorsaman=a×a×a....to (m-n) factorsaman=am-n

Case 2 

When

We get

Cancelling common factors in numerator and denominator we get,

By definition we can write 1 as

Case 3 

When

In this case, we have 

Hence, whether, or,

Page No 56:

Question 4:

State the power law of exponents.

Answer:

The "power rule" tell us that to raise a power to a power, just multiply the exponents. 

If a is any real number and m, n are positive integers, then

We have,

factors

factors

Hence,

Page No 56:

Question 5:

If 24 × 42 =16x, then find the value of x.

Answer:

We have to find the value of x provided

So,

By equating the exponents we get

Hence the value of x is .

Page No 56:

Question 6:

If 3x-1 = 9 and 4y+2 = 64, what is the value of xy ?

Answer:

We have to find the value of for

So,

By equating the exponent we get

Let’s take

By equating the exponent we get

By substituting in we get

Hence the value of is

Page No 56:

Question 7:

Write the value of 73×493.

Answer:

We have to find the value of . So,

By using law rational exponents we get,

Hence the value of is

Page No 56:

Question 8:

Write 19-1/2×(64)-1/3 as a rational number.

Answer:

We have to find the value of . So,

Hence the value of the value of is .

Page No 56:

Question 9:

Write the value of 125×273.

Answer:

We have to find the value of 125×273. So,


125×273=53×333=5×3=15

Hence the value of the value of is .



Page No 57:

Question 10:

Write the value of 5(81/3+271/3)31/4.

Answer:

We have to find the value of. So,

By using rational exponents we get 

Hence the simplified value of is

Page No 57:

Question 11:

Simplify 625-1/2-1/42

Answer:

We have to simplify. So,

Hence, the value of is

Page No 57:

Question 12:

If (− 1)3 = 8, What is the value of (+ 1)2 ?

Answer:

We have to find the value of , where 

Consider

By equating the base, we get

By substituting in

Hence the value of is .

Page No 57:

Question 1:

(212 – 152)2/3 is equal to ________.

Answer:

212-15223=441-22523                  =21623                  =6323                  =63×23                  =62                  =36

Hence, (212 – 152)2/3 is equal to 36.

Page No 57:

Question 2:

811/4 × 93/2 × 27–4/3 is equal to _________.

Answer:

8114×932×27-43=3414×3232×12743                         =34×14×32×32×13343                         =31×33×133×43                         =31+3×134                         =34×134                         =1

Hence, 811/4 × 93/2 × 27–4/3 is equal to 1.

Page No 57:

Question 3:

169-3196-8148= __________.

Answer:

169-3196-8148=132-3142-8148                   =132×-3142×-8148                   =13-614-16148                   =13-6×14814-16×148                   =13-1814-13                   =1131811413                   =14131318

Hence, 169-3196-8148=   14131318  .

Page No 57:

Question 4:

If x = 82/3 × 32–2/5, then x–5 = ________.

Answer:

Let x=823×32-25x=2323×25-25x=23×23×25×-25x=22×2-2x=22×122x=1Now,x-5=1x5     =115     =1

Hence, if x = 82/3 × 32–2/5, then x–5 = 1.

Page No 57:

Question 5:

If 6n = 1296, then 6n–3 = _________.

Answer:

Let 6n=12966n=64n=4Now,6n-3=64-3       =61       =6

Hence, if 6n = 1296, then 6n–3 = 6.

Page No 57:

Question 6:

The value of 4 × (256)–1/4 ÷ (243)1/5 is ________.

Answer:

Let x=4×256-14÷24315x=4×44-14÷3515x=4×44×-14÷35×15x=4×4-1÷31x=4×14÷31x=1÷3x=13

Hence, the value of 4 × (256)–1/4 ÷ (243)1/5 is 13.

Page No 57:

Question 7:

If 6x6=623, then x = ________.

Answer:

Let 6x6=6236x6=6866x6=68x6=6866x6=68-6x6=62x=6216x=62×16x=613

Hence, if 6x6=623, then x=613.

Page No 57:

Question 8:

ab99-9799+97= ___________.

Answer:

ab99-9799+97=ab99-97×99+97=ab992-972         using the identity: a2-b2=a+ba-b=ab99-97=ab2=a2b2

Hence, ab99-9799+97a2b2.

Page No 57:

Question 9:

If p+1qp-qp-1qp+qq+1pp-qq-1pp+q=pqx, then x =_________.

Answer:

p+1qp-qp-1qp+qq+1pp-qq-1pp+q=pqxqp+1qp-qpq-1qp+qpq+1pp-qpq-1pp+q=pqxqp+1p-qqp-q×pq-1p+qqp+qpq+1p-qpp-q×pq-1p+qpp+q=pqxqp+1p-qqp-q×pq-1p+qqp+q×pp-qpq+1p-q×pp+qpq-1p+q=pqxpp-qqp-q×pp+qqp+q=pqxpp-q+p+qqp-q+p+q=pqxp2pq2p=pqxpq2p=pqx2p=xx=2p

Hence, if p+1qp-qp-1qp+qq+1pp-qq-1pp+q=pqx, then x=2p.

Page No 57:

Question 10:

If 5n+2 = 625, then (12n + 3)1/3 = _________.

Answer:

Let 5n+2=6255n+2=54n+2=4n=2Now,12n+313=122+313                =24+313                =2713                =3313                =33×13                =3

Hence, if 5n+2 = 625, then (12n + 3)1/3 = 3.

Page No 57:

Question 11:

If a3-7a×a6-2aa2a×a9-2a19=__________.

Answer:

a3-7a×a6-2aa2a×a9-2a19=a3-7a+6-2aa2a+9-2a19                           =a9-9aa919                           =a9-9a-919                           =a-9a19                           =a-9a×19                           =a-a                           =1aa

Hence, a3-7a×a6-2aa2a×a9-2a19=1aa. 

Page No 57:

Question 12:

If 1243x=729y=33, then 5x + 6y = __________.

Answer:

Given: 1243x=729y=331243x=33135x=33135x=333-5x=33-5x=35x=-3           ...1729y=3336y=3336y=336y=3               ...2Adding 1 and 2, we get5x+6y=-3+3          =0

Hence, 5x + 6y = 0.

Page No 57:

Question 13:

If 6x–y = 36 and 3x+y = 729, then x2y2 = _________.

Answer:

Given: 6x-y=36and 3x+y=729 6x-y=36 6x-y=62x-y=2              ...13x+y=7293x+y=36x+y=6               ...2Adding 1 and 2, we get2x=8x=4Substituting the value of x in 2, we get4+y=6y=2Now,x2-y2=42-22          =16-4          =12

Hence, x2 – y2 = 12.

Page No 57:

Question 14:

2234 equals __________.

Answer:

2234=221314          =2213×14          =22112          =22×112          =216

Hence, 2234 equals 216.

Page No 57:

Question 15:

The product 23.24.3212 is equal to ________.

Answer:

23.24.3212=213.214.32112                     =213.214.25112                     =213.214.25×112                     =213.214.2512                     =213+14+512                     =24+3+512                     =21212                     =21                     =2

Hence, the product 23.24.3212 is equal to 2.

Page No 57:

Question 16:

81-24 is equal to _________.

Answer:

81-24=81-214             =81-2×14             =81-12             =34-12             =34×-12             =3-2             =132             =19

Hence, 81-24 is equal to 19.

Page No 57:

Question 17:

The value of (256)0.16  × (256)0.09 is ________.

Answer:

2560.16×2560.09=2560.16+0.09                            =2560.25                            =25625100                            =25614                            =2814                            =28×14                            =22                            =4

Hence, the value of (256)0.16  × (256)0.09 is 4.



View NCERT Solutions for all chapters of Class 9