NCERT Solutions for Class 11 Science Physics Chapter 9 Mechanical Properties Of Solids are provided here with simple step-by-step explanations. These solutions for Mechanical Properties Of Solids are extremely popular among Class 11 Science students for Physics Mechanical Properties Of Solids Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the NCERT Book of Class 11 Science Physics Chapter 9 are provided here for you for free. You will also love the ad-free experience on Meritnation’s NCERT Solutions. All NCERT Solutions for class Class 11 Science Physics are prepared by experts and are 100% accurate.

Page No 65:

Question 9.1:

Modulus of rigidity of ideal liquids is
(a) infinity.
(b) zero.
(c) unity.
(d) some finite small non-zero constant value.

Answer:

The ratio of tangential stress to the shearing strain within limits of proportionality is termed as modulus of rigidity of the material of a given body.
Only solid materials can exhibit shearing as they have a specific shape. Liquids cannot sustain shearing stress and the tangential forces are also zero so they do not develop any tangential stress. Hence, modulus of rigidity is zero.
Hence, the correct answer is option (b).
 

Page No 65:

Question 9.2:

The maximum load a wire can withstand without breaking, when its length is reduced to half of its original length, will
(a) be double.
(b) be half.
(c) be four times.
(d) remain same.

Answer:

The Breaking force of a wire is given by
Breaking force = Breaking stress ⨯ Area
Breaking stress is a constant for a given material. From the formula we can see that maximum load a wire can withstand is independent of it's length.
Hence, the correct answer is option (d).

Page No 65:

Question 9.3:

The temperature of a wire is doubled. The Young’s modulus of elasticity
(a) will also double.
(b) will become four times.
(c) will remain same.
(d) will decrease.

Answer:

The Young's modulus decreases with increases temperature. Increase in temperature in the metal material can increase the vibration of atoms in the crystal structure, which will increase the atomic distance and decrease the atomic force.
Hence, the correct answer is option (d).



Page No 66:

Question 9.4:

A spring is stretched by applying a load to its free end. The strain produced in the spring is
(a) volumetric.
(b) shear.
(c) longitudinal and shear.
(d) longitudinal.

Answer:

The force acts along the cross sectional area of the spring , instead of being perpendicular, resulting in the development of torsion which leads to the development of shear strain. Also the spring stretches axially, so there is also a longitudinal strain.
Hence, the correct answer is option (c).

Page No 66:

Question 9.5:

A rigid bar of mass M is supported symmetrically by three wires each of length l . Those at each end are of copper and the middle one is of iron. The ratio of their diameters, if each is to have the same tension, is equal to

(a) Ycopper/Yiron

(b) YironYcopper

(c) Yiron2Ycopper2

(d) YironYcopper.

Answer:

As the bar is supported symmetrically by wires the tension (T) and the extension (L) in the wires will be same.
 Y = StressStrain=FALL=FLπd2L4=4TLπd2Lsince, T and L are same in all the wires, we can writeY  1d2 d  1Y on solving we will get,dcopperdiron=YironYcopper
Hence, the correct answer is option (b).

Page No 66:

Question 9.6:

A mild steel wire of length 2L and cross-sectional area A is stretched, well within elastic limit, horizontally between two pillars (Fig. 9.1). A mass m is suspended from the mid point of the wire. Strain in the wire is

(a) x22L2

(b) xL

(c) x2L

(d) x22L.

Answer:

As shown in the diagram, due to the weight at the mid point the wire gets stretched:

Change in  the length of the wire be,      =2L2+x2  - 2L      =2L[1+(xL)2]12 -2 L    = 2L[1+12(xL)2 ]- 2L      using binomial expansion and ignoring the higher power terms, as x is very small as compared to the L.       = x2LThe strain in the wire will be given by,Strain = Change in lengthOriginal length           =x22L2
Hence, the correct answer is option (a).



Page No 67:

Question 9.7:

A rectangular frame is to be suspended symmetrically by two strings of equal length on two supports (Fig. 9.2). It can be done in one of the following three ways;

The tension in the strings will be
(a) the same in all cases.
(b) least in (a).
(c) least in (b).
(d) least in (c).

Answer:

Let us take free body diagram for image (c):

from the free body diagram we can see that the vertical component of tension in string (T)is given by, Tcosθ  Since the body is in equillibrium,2Tcosθ = mgT = mg2cosθAs θ increases(from 0ο to 90ο), cosθ will decrease, which implies tension (T) increases T  θ Tension will be minimum in case b θ=0ο.

Hence, the correct answer is option (c).

Page No 67:

Question 9.8:

Consider two cylindrical rods of identical dimensions, one of rubber and the other of steel. Both the rods are fixed rigidly at one end to the roof. A mass M is attached to each of the free ends at the centre of the rods.
(a) Both the rods will elongate but there shall be no perceptible change in shape.
(b) The steel rod will elongate and change shape but the rubber rod will only elongate.
(c) The steel rod will elongate without any perceptible change in shape, but the rubber rod will elongate and the shape of the bottom edge will change to an ellipse.
(d) The steel rod will elongate, without any perceptible change in shape, but the rubber rod will elongate with the shape of the bottom edge tapered to a tip at the centre.

Answer:

Steel is more elastic than rubber. Steel will elongate without making any perceptible change in shape, but the rubber rod will elongate with the shape of bottom edge tapered to a tip at the centre.
Hence, the correct answer is option (d).



Page No 68:

Question 9.9:

The stress-strain graphs for two materials are shown in Fig.9.3 (assume same scale).

(a) Material (ii) is more elastic than material (i) and hence material (ii) is more brittle.
(b) Material (i) and (ii) have the same elasticity and the same brittleness.
(c) Material (ii) is elastic over a larger region of strain as compared to (i).
(d) Material (ii) is more brittle than material (i).

Answer:

From graph (i) linear limit vanishes soon and for small stress there is large strain as compared to graph (ii).
Thus, material (ii) is more elastic over a large region of strain as compared to (i).

A material is said to be more brittle if it's fracture point is more closer to ultimate strength point.
Thus, material (ii) is more brittle than material (i).
Hence, the correct options are (c) and (d).

Page No 68:

Question 9.10:

A wire is suspended from the ceiling and stretched under the action of a weight F suspended from its other end. The force exerted by the ceiling on it is equal and opposite to the weight.
(a) Tensile stress at any cross section A of the wire is F/A.
(b) Tensile stress at any cross section is zero.
(c) Tensile stress at any cross section A of the wire is 2F/A.
(d) Tension at any cross section A of the wire is F.

Answer:

According to the diagram a wire is stretched under the action of weight F suspended from its other end. Clearly, forces at each cross-section is F.
Tensile stress = ForceArea of cross-section

Hence, the correct options are (a) and (d).

Page No 68:

Question 9.11:

A rod of length l and negligible mass is suspended at its two ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths (Fig. 9.4). The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2, respectively.
(YAl = 70 × 109 Nm–2 and Ysteel = 200 × 109 Nm–2)

(a) Mass m should be suspended close to wire A to have equal stresses in both the wires.
(b) Mass m should be suspended close to B to have equal stresses in both the wires.
(c) Mass m should be suspended at the middle of the wires to have equal stresses in both the wires.
(d) Mass m should be suspended close to wire A to have equal strain in both wires.

Answer:

Tension in the wire will be more if the mass m is suspended closer to it.
by formula for stress,stress =TensionArealet TA be tension in wire A, and TB be tension in wire Bfor equal stress,TA AA=TBABTA TB=AAAB=12Thus TA < TB for equal stress mass m should be suspended closer to wire Bby formula for strain,strain = stressY=TYAfor equal strain,TA YAAA=TBYBABTA TB=YAAAYBAB=200×109×170×109×2=107Thus TA > TB for equal strain mass m should be suspended closer to wire A
Hence, the correct options are (b) and (d).



Page No 69:

Question 9.12:

For an ideal liquid
(a) the bulk modulus is infinite.
(b) the bulk modulus is zero.
(c) the shear modulus is infinite.
(d) the shear modulus is zero.

Answer:

An ideal fluid is not compressible. Hence change in volume, 
 V = 0.Bulk modulus b is given by,B=Volume stressVolume strain=FAVv=FVAV=A liquid cannot sustain tangential force. It may contain tangential viscous , soη=shear stressshear strain=0 

Hence, the correct options are (a) and (d).
 

Page No 69:

Question 9.13:

A copper and a steel wire of the same diameter are connected end to end. A deforming force F is applied to this composite wire which causes a total elongation of 1cm. The two wires will have
(a) the same stress.
(b) different stress.
(c) the same strain.
(d) different strain.

Answer:

Since the wires are in series the deforming force (F) will be same, hence the stress FAwill also be the same in both the wires.From the formula of Young's modulus,Y=FLAL , we getL = FLYAfor steel  Lsteel = FLYsteelA and for copper Lcopper = FLYcopperAsince , YsteelYcopperLsteelLcopperThe wires will have different strain LL
Hence, the correct options are (a) and (d).

 

Page No 69:

Question 9.14:

The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress?

Answer:

Young's modulus (Y) = Tensile stressLongitudnal strainTensile stress = Young's modulus × Longitudnal strainIt is given that,strainsteel = strainrubberSince,Ysteel  Yrubber stresssteel  stressrubber
 Hence, for same longitudinal strain, steel will have greater tensile stress than that of the rubber.

Page No 69:

Question 9.15:

Is stress a vector quantity?

Answer:

stress = magnitude of deforming forcemagnitude of area of cross-section
Stress is not a vector quantitty

Page No 69:

Question 9.16:

Identical springs of steel and copper are equally stretched. On which, more work will have to be done?

Answer:

Total work done in increasing the length by L is given by,W=YA(L )22LThis work done is stored in form of potential energy in the wire.If the the wires are identical then L and A will be same for both the wiresIt is also given that L is same for both the wires.Since,W   Ywe know that,Ysteel > Ycopper Wsteel > Wcopper
 Hence, more work will be done in case of spring made of steel.

Page No 69:

Question 9.17:

What is the Young’s modulus for a perfect rigid body?

Answer:

Young's modulus (Y) = stressstrainfor a perfectly rigid body, strain = 0 , no matter what the stress is,Y = 
Hence for perfectly rigid body, Young  modulus will be infinity.

Page No 69:

Question 9.18:

What is the Bulk modulus for a perfect rigid body?

Answer:

Bulk modulus (Y) = volume stressvolume strainfor a perfectly rigid body, volume strain = 0 , no matter what the stress is,B = 

Hence for a perfectly rigid body, Bulk modulus will be infinity ().
​Hence, for a perfectly rigid body, Bulk modulus will be infinity (∞).

Page No 69:

Question 9.19:

A wire of length L and radius r is clamped rigidly at one end. When the other end of the wire is pulled by a force f, its length increases by l. Another wire of the same material of length 2L and radius 2r, is pulled by a force 2f. Find the increase in length of this wire.

Answer:

Y= stressstrain=FALL=FLALfor the first wire ,Y = fLπr2l                       ...1for the second wire,Y=(2f)(2L)π(2r)2l'                     ...2equating 1 to 2fLπr2l=(2f)(2L)π(2r)2l' l'=l
Hence, the required increase in length of the wire be l.



Page No 70:

Question 9.20:

A steel rod (Y = 2.0 × 1011 Nm–2; and α = 10–5 C–1) of length 1 m and area of cross-section 1 cm2 is heated from 0°C to 200°C, without being allowed to extend or bend. What is the tension produced in the rod?

Answer:

According to the question as temperature increases the length of the rod should had increased, but due to rigid support it does not, which creates strain in the rod.L = αLTstrain = LL=αT=10-5×200           =2×10-3we know that,Y = TALLT = Y×A×LL    =2×1011×10-4×2×10-3    =4×104 N

Page No 70:

Question 9.21:

To what depth must a rubber ball be taken in deep sea so that its volume is decreased by 0.1%. (The bulk modulus of rubber is 9.8 × 108 N m–2; and the density of sea water is 103 kg m–3.)

Answer:

Let h be the required depth,
By defination,B =- Pvv,change in pressure (P) = ρgh volume strain VV  = - 0.1 % = - 11000P=-B×VVρgh=-B×VV103×9.8×h=-9.8×108×-11000h =102 m
 

Page No 70:

Question 9.22:

A truck is pulling a car out of a ditch by means of a steel cable that is 9.1 m long and has a radius of 5 mm. When the car just begins to move, the tension in the cable is 800 N. How much has the cable stretched? (Young’s modulus for steel is 2 × 1011 Nm–2.)

Answer:

According to the question,length of steel cable, L = 9.1 mradius, r = 5 mm = 5×10-3 mTension, F= 800 NYoung's modulus, F= 2×1011 N/m2Y is given by the formula ,Y=FALLwe get,L= FLY(πr2)=800×9.12×1011×3.14×5×10-32on solving we get,L=5×10-4 m       = 0.5 mm

Page No 70:

Question 9.23:

Two identical solid balls, one of ivory and the other of wet-clay, are dropped from the same height on the floor. Which one will rise to a greater height after striking the floor and why?

Answer:

Ivory ball is more elastic than a wet-clay ball, it has a higher tendency to regain its original shape. Due to this reason, more energy and momentum is transferred to the ivory ball in comparison to the wet-clay ball and hence, ivory ball will rise higher after striking the floor even though both are dropped from same height.

Page No 70:

Question 9.24:

Consider a long steel bar under a tensile stress due to forces F acting at the edges along the length of the bar (Fig. 9.5). Consider a plane making an angle θ with the length. What are the tensile and shearing stresses on this plane?

(a) For what angle is the tensile stress a maximum?
(b) For what angle is the shearing stress a maximum?

Answer:

In the given problem force F acts along the horizontal, so we resolve it in two perpendicular components, one is parallel  to the plane αα' which will be given by,F=F cos θthe other will be perpendicular to the plane αα',F=F sin θlet the cross sectional area of bar be A, then area of plane αα' will be given by, AsinθTensile stress =perpendicular forceArea= FAsin θ=F sin2 θAShear stress = parallel forceArea=FA=F cos θAsin θ=F sin 2θ2Aa maximum tensile stress will be when sin2 θ =1 ,       θ =90ob maximum shear stress will be when sin 2θ =1 ,       2θ =90o      θ =45o

Page No 70:

Question 9.25:

(a) A steel wire of mass µ per unit length with a circular cross section has a radius of 0.1 cm. The wire is of length 10 m when measured lying horizontal, and hangs from a hook on the wall. A mass of 25 kg is hung from the free end of the wire. Assuming the wire to be uniform and lateral strains << longitudinal strains, find the extension in the length of the wire. The density of steel is 7860 kg m–3 (Young’s modules Y = 2 × 1011 Nm–2).
(b) If the yield strength of steel is 2.5 × 108 Nm–2, what is the maximum weight that can be hung at the lower end of the wire?

Answer:

Consider an element of length dx at a distance x from the load (x = 0)

a If tension Tx and T(x+dx) are tensions on the cross sections a distance dx apart, then     T(x+dx)-T(x)= μgdx     dTdx×dx=μgdx    T(x) = μgx + Cat x=0, T0=Mg C = Mg     T(x)= μgx +MgLet the length dx at x extend by dr, then       Y=T(x)Adrdx      dr=T(x)YA      r = 1YA0L(μgx +Mg)dx        =1YAμgx22+Mgx0L        =1YAμgL22+MgL=1YAmgL22+MgL      (m is the mass of the wire)     A =π×10-32 m2, Y = 200×109 Nm-2     m = π×10-32×10×7860 kg     r=1 2×1011×π×10-6 π×786×10-7×10×102+25×10×10         =[196.5×10-6+3.98×10-3]         =4×10-3 m

(b) The maximum tension would be at x=L      T = μgL + Mg = (m+M)g      the yield force      = 250×106×π×10-32=250π N      At yield      (m+M)g = 250π     m = π×10-32×10×7860 = 0.025 kg     thus,  m << M     Mg= 250π     M=25π=75 kg



Page No 71:

Question 9.26:

A steel rod of length 2l, cross sectional area A and mass M is set rotating in a horizontal plane about an axis passing through the centre. If Y is the Young’s modulus for steel, find the extension in the length of the rod. (Assume the rod is uniform.)

Answer:

Consider an element of length dr at a distance r from the centre of the rod,

Mass of the element, dm=M2ldrCentripetal force on this element,dF = dm.rω2dF=M2lrω2drLet F be the tension in the rod at distance r from centre then,F=rlM2lrω2dr=M4lω2l2-r2If r is the extension in the element of length dr at position r, thenr=FdrYAHence extension in half of the rod is given by:r=0lFdrYA=0lM4lYAω2(l2-r2)dr=Mω24lYA(l3-l33)=Mω2l26YAtotal extension in entire rod of length will be 2rHence, the total change in length = Mω2l23YA

Page No 71:

Question 9.27:

An equilateral triangle ABC is formed by two Cu rods AB and BC and one Al rod. It is heated in such a way that temperature of each rod increases by ∆T. Find change in the angle ABC. [Coeff. of linear expansion for Cu is α1, Coeff. of linear expansion for Al is α2]

Answer:

Due to the increase in length of the rod, each side of the triangle will change, and hence the angle corresponding to any vertex will also change. Initial length of each side be, AB = BC = CA = l
Now after heating, the temperature of each rod is changed by T, and hence the sides of ABC are changed accordingly.
Let the new length be, AB = l1, CA = l and BC = l
Let the angle B of the triangle be θ, then
cosθ=l12+l32-l222l1×l32l1×l3cosθ=l12+l32-l22Differentiating both side, and using expansion in length as (dl=lαT), we getsinθdθ=2α1T(1-cosθ)-α2TFor equilateral triangle, θ=60odθ=2α1-α2T3= change in angle B of the triangle ABC.

Page No 71:

Question 9.28:

In nature, the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus the vertical through the centre of gravity does not fall within the base. The elastic torque caused because of this bending about the central axis of the tree is given by Yπr44R. Y is the Young’s modulus, r is the radius of the trunk and R is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.

Answer:


Let W be the weight of the tree, which acts in downward direction
When the tree bent , then,
Torque on the trunk of the tree due to its weight,
Wd=Yπr44R
If R>>h, then its centre of gravity is at at a height  h2  from the ground.From, triangle ABC,R2=R-d2+h22If d<<R,  then d=h2 8RYπr44R=ωoπr2hh28R           Where,ωo=weightvolumeh=2Yωo1/3×r2/3=Critical height
 

Page No 71:

Question 9.29:

A stone of mass m is tied to an elastic string of negligble mass and spring constant k. The unstretched length of the string is L and has negligible mass. The other end of the string is fixed to a nail at a point P. Initially the stone is at the same level as the point P. The stone is dropped vertically from point P.
(a) Find the distance y from the top when the mass comes to rest for an instant, for the first time.
(b) What is the maximum velocity attained by the stone in this drop?
(c) What shall be the nature of the motion after the stone has reached its lowest point?

Answer:

Till the stone drops through a length L it will be in free fall. After that it will execute simple harmonic motion as the restoring force starts acting on it.
 (a)  Let stone covers a distance y before coming to rest when the stone is dropped,
So, loss in potential energy of the stone = gain in potential energy in string
mgy=12k(y-L)2 Solving we get,y=kL+mg+2mgkL+mg2k 
(b) The maximum velocity is attained when the body passes through the “equilibrium, position”.
At equilibrium position,mg-kx=0x=mgk.....(1)Also, its mechanical energy must be conserved, 12mv2+12kx2=mg(L+x).....(2) ( where, v=velocity at that position )Solving eq(1) and eq(2), we getv=2gL+mg2k      
(c) The stone is at the lowest point Q, then
 Angular frequency of body in SHM,ω=kmAt mean position (y =yo),km(yo-L)-g=0yo=L+mgkSo, the stone will execute simple harmonic motion with angular frequency ω about a point yo=L+mgk.d2ydt2+km(y-L)-g=0Let,km(y-L)-g=zthen,d2ydt2=mkd2zdt2Hence, the equation becomes,mkd2zdt2+z=0d2zdt2=-kmz=-ω2zω=kmFor mean position, z=0kmyo-L-g=0yo=L+mgk
Hence, the stone will execute SHM, about point  yo=L+mgk

 



View NCERT Solutions for all chapters of Class 11