Rs Aggarwal 2021 2022 Solutions for Class 10 Maths Chapter 2 Polynomials are provided here with simple step-by-step explanations. These solutions for Polynomials are extremely popular among Class 10 students for Maths Polynomials Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rs Aggarwal 2021 2022 Book of Class 10 Maths Chapter 2 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rs Aggarwal 2021 2022 Solutions. All Rs Aggarwal 2021 2022 Solutions for class Class 10 Maths are prepared by experts and are 100% accurate.

Page No 52:

Answer:

We have:f(x)=x2+3x10=x2+5x2x10=x(x+5)2(x+5)=(x2)(x+5)f(x)=0=>(x2)(x+5)=0                 =>x2=0 or x+5=0                  =>x=2 or x=5So, the zeroes of f(x)are 2 and5.Sum of the zeroes = 2+(5)= 3=31=(coefficient of x)(coefficient of x2)Product of the zeroes= 2× (5) = 10 =101=constant term(coefficient of x2)

Page No 52:

Answer:

x2-2x-8=0x2-4x+2x-8=0xx-4+2x-4=0
x-4x+2=0x-4 =0 or x+2=0x=4 or x=-2

Sum of zeroes = 4+-2=2=21=-coefficient of xcoefficient of x2 4+(3)=71=(coefficient of x)(coefficient of x2)
Product of zeroes = 4-2=-8=-81=constant termcoefficient of x2 (4)(3)=121=constant termcoefficient of x2

Page No 52:

Answer:

x2+7x+12=0x2+4x+3x+12=0xx+4+3x+4=0

x+4x+3=0x+4=0 or x+3=0x=-4 or x=-3

Sum of zeroes = -4+-3=-71=-coefficient of xcoefficient of x2
Product of zeroes =  -4-3=121=constant termcoefficient of x2

Page No 52:

Answer:

Let f(x) = 2x x – 6

To find the zeroes, we put f(x)=02x2-x-6=02x2-4x+3x-6=02xx-2+3x-2=0x-22x+3=0x-2=0 or 2x+3=0x=2,-32

Hence, all the zeroes of the polynomial f(x) are 2 and -32.

Now,
f2=222-2-6      =24-8      =8-8      =0f-32=2-322--32-6          =294+32-6          =92+32-6          =122-6          =6-6          =0

Hence, the relationship between the zeros and the coefficients is verified.

Page No 52:

Answer:

 We have:f(x)=4x24x3=4x2(6x2x)3=4x26x+2x3=2x(2x3)+1(2x3)=(2x+1)(2x3)f(x)=0=>(2x+1)(2x3)=0                  =>2x+1=0 or 2x3=0                  =>x=12 or x=32So, the zeros of f(x) are 12 and 32.Sum of the zeros =12+32=1+32=22=1=(coefficient of x)(coefficient of x2)Product of the zeros= 12×32 =34=constant term(coefficient of x2)

Page No 52:

Answer:

 We have:f(x)=5x248x  =5x28x-4=5x2(10x2x)4=5x210x+2x4=5x(x2)+2(x2)=(5x+2)(x2)f(x)=0=>(5x+2)(x2)=0                 =>5x+2=0 or x2=0                 =>x=25 or x=2So, the zeros of f(x) are 25 and 2.Sum of the zeros = 25+2= 2+105=85=(coefficient of x)(coefficient of x2)Product of the zeros= 25 × 2 =45=constant term(coefficient of x2)

Page No 52:

Answer:

We have:f(x)=2x211x+15=2x2(6x+5x)+15=2x26x5x+15=2x(x3)5(x3)=(2x5)(x3)f(x)=0=>(2x5)(x3)=0                 =>2x5=0 or x3=0                  =>x=52 or x=3So, the zeroes of f(x) are 52 and 3.Sum of the zeroes =52+3=5+62=112=(coefficient of x)(coefficient of x2)Product of the zeroes = 52× 3=152=constant term(coefficient of x2)

Page No 52:

Answer:


23x2-5x+323x2-2x-3x+32x3x-1-33x-1=0

3x-1 or 2x-3=03x-1=0 or 2x-3=0x=13 or x=32x=13×33=33 or x=32

Sum of zeroes = 33 +32=536=-coefficient of xcoefficient of x2 4+(3)=71=(coefficient of x)(coefficient of x2)
Product of zeroes = 33 ×32=12=constant termcoefficient of x2 (4)(3)=121=constant termcoefficient of x2

Page No 52:

Answer:

4x2-4x+1=02x2-22x1+12=02x-12=0            a2-2ab+b2=a-b2

2x-12=0x=12 or x=12

Sum of zeroes = 12 +12=1=11=-coefficient of xcoefficient of x2 4+(3)=71=(coefficient of x)(coefficient of x2)
Product of zeroes = 12 ×12=14=constant termcoefficient of x2 (4)(3)=121=constant termcoefficient of x2

Page No 52:

Answer:

Let f(x) = 3x x – 4

To find the zeroes, we put f(x)=03x2-x-4=03x2-4x+3x-4=0x3x-4+13x-4=0x+13x-4=0x+1=0 or 3x-4=0x=-1, 43

Hence, all the zeroes of the polynomial f(x) are -1 and 43.

Now,
f-1=3-12--1-4        =31+1-4        =3-3        =0f43=3432-43-4        =3169-43-4        =163-43-4        =123-4        =4-4        =0

Hence, the relationship between the zeros and the coefficients is verified.

Page No 52:

Answer:

Let f(x) = 5x+ 10x

To find the zeroes, we put f(x)=05x2+10x=05xx+2=0xx+2=0x=0 or x+2=0x=0, -2

Hence, all the zeroes of the polynomial f(x) are 0 and -2.

Now,
f0=502+100      =0+0      =0f-2=5-22+10-2         =54-20         =20-20         =0

Hence, the relationship between the zeros and the coefficients is verified.

Page No 52:

Answer:

 We have:f(x)=8x24It can be written as 8x2+0x4=4{(2x)2(1)2}=4(2x+1)(2x1)f(x)=0=>(2x+1)(2x1)=0                 =>2x+1=0 or 2x1=0                 =>x=12 or x=12So, the zeroes of f(x) are 12  and 12Here the coefficient of x is 0 and the coefficient of x2 is 2Sum of the zeroes =12+12=1+12=02=(coefficient of x)(coefficient of x2)Product of the zeroes=  12×12=1×42×4=-48=constant term(coefficient of x2)

Page No 52:

Answer:

Let α and β be the zeroes of the polynomial px=2x2+5x+k.

Sum of zeroes=-baα+β=-52     ...1andProduct of zeroes=caαβ=k2            ...2

Now, using (1)
α+β=-52Squaring both sides, we getα+β2=-522α2+β2+2αβ=254α2+β2+αβ+αβ=254214+αβ=254αβ=254-214αβ=1k2=1       from 2k=2

Hence, the value of k is 2.

Page No 52:

Answer:

Let α and β be the zeroes of the required polynomial f(x).Then (α+β)=8 and αβ=12f(x)=x2(α+β)x+αβ=>f(x)=x28x+12Hence, required polynomial f(x)=x28x+12f(x)=0=>x28x+12=0                 => x2(6x+2x)+12=0                 => x26x2x+12=0                 => x(x6)2(x6)=0                 => (x2)(x6)=0                 => (x2)=0 or (x6)=0                 => x=2 or x=6So, the zeroes of f(x) are 2 and 6.

Page No 52:

Answer:

Let α and β be the zeros of the required polynomial f(x).Then (α+β)=0 and αβ=1f(x)=x2(α+β)x+αβ=>f(x)=x20x+(1)=>f(x)=x21Hence, the required polynomial is f(x)=x21.f(x)=0=>x21=0                 => (x+1)(x1)=0                 => (x+1)=0 or (x1)=0                 => x=1 or x=1So, the zeros of f(x) are 1 and 1.

Page No 52:

Answer:

 Let α and β be the zeros of the required polynomial f(x).Then (α+β)=52 and αβ=1f(x)=x2(α+β)x+αβ=>f(x)=x252x+1=>f(x)=2x25x+2Hence, the required polynomial is f(x)=2x25x+2.f(x)=0=>2x25x+2=0                 => 2x2(4x+x)+2=0                 => 2x24xx+2=0                 => 2x(x2)1(x2)=0                 => (2x1)(x2)=0                 => (2x1)=0 or (x2)=0                 => x=12 or x=2So, the zeros of f(x)are 12 and 2.

Page No 52:

Answer:

Let α=2 and β=6Sum of the zeroes, (α+β)=2+(6)=4Product of the zeroes, αβ=2×(6)=12∴ Required polynomial =x2(α+β)x+αβ=x2(4)x12                                     =x2+4x12Sum of the zeroes =4=41=(coefficient of x)(coefficient of x2)Product of the zeroes =12=121=constant termcoefficient of x2

Page No 52:

Answer:

 Let α=23 and β=14.Sum of the zeroes = (α+β)=23+14=8312=512Product of the zeroes = αβ=23×14=21126=16∴ Required polynomial = x2(α+β)x+αβ=x2512x+16                                     =x2512x16  Sum of the zeroes =512=(coefficient of x)(coefficient of x2)Product of the zeroes =16=constant termcoefficient of x2                                   

Page No 52:

Answer:

Given: x+a is a factor of 2x2+2ax+5x+10
So, we have
x+a=0x=-a
Now, It will satisfy  the above polynomial.
Therefore, we will get
2-a2+2a-a+5-a+10=02a2-2a2-5a+10=0-5a=-10a=2



Page No 53:

Answer:

Given: ax2+7x+b=0
Since, x=23 is the root of the above quadratic equation
Hence, It will satisfy the above equation.
Therefore, we will get
a232+723+b=049a+143+b=04a+42+9b=04a+9b=-42                   ...1

Since, x=-3 is the root of the above quadratic equation
Hence, It will satisfy the above equation.
Therefore, we will get
a-32+7-3+b=09a-21+b=09a+b=21                      ...2
From (1) and (2), we get
a=3, b=-6



Page No 59:

Answer:


 The given polynomial is f(x)=x4+4x32x220x15.Since (x5) and (x+5) are the zeroes of f(x), it follows that each one of (x5) and (x+5) is a factor of f(x).Consequently, (x5)(x+5)=(x25) is a factor of f(x).On dividing f(x) by(x25), we get:


f(x)=0=>x4+4x37x220x15=0=>(x25)(x2+4x+3)=0=>(x5)(x+5)(x+1)(x+3)=0=>x=5 or x=5 or x=1 or x=3Hence, all the zeros are 5,5,1 and 3.



Page No 60:

Answer:

By using the relationship between the zeroes of the quadratic ploynomial.
We have,
Sum of zeroes = -coefficient of xcoefficent of x2 and Product of zeroes = constant termcoefficent of x2
α+β=--75 and αβ=15α+β=75 and αβ=15Now,1α+1β=α+βαβ

                        =7515                        =7



Page No 61:

Answer:

By using the relationship between the zeroes of the quadratic ploynomial.
We have,
Sum of zeroes = -coefficient of xcoefficent of x2 and Product of zeroes = constant termcoefficent of x2

α+β=-11 and αβ=-21α+β=-1 and αβ=-2Now,1α-1β2=β-ααβ2

=α+β2-4αβαβ2          β-α2=α+β2-4αβ=-12-4-2-22          α+β=-1 and αβ=-2=-12-4-24=94

1α-1β2=941α-1β=±32

Page No 61:

Answer:

By using the relationship between the zeroes of the cubic ploynomial.
We have, Sum of zeroes = -coefficient of x2coefficent of x3
a-b+a+a+b=--313a=3a=1

Now, Product of zeros = -constant termcoefficent of x3
a-baa+b=-111-b11+b=-1     a=11-b2=-1b2=2b=±2



Page No 63:

Answer:

 The given polynomial is p(x)=(x32x25x+6)p(3)=(332×325×3+6)=(271815+6)=0p(2)=[(23)2×(22)5×(2)+6]=(88+10+6)=0p(1)=(132×125×1+6)=(125+6)=03,2 and 1 are the zeroes of p(x),Let α=3, β=2 and γ=1. Then we have:(α+β+γ)=(32+1)=2=(coefficient of x2)(coefficient of x3)(αβ+βγ+γα)=(62+3)=51=coefficient of xcoefficient of x3 αβγ={3×(2)×1}=61=(constant term)(coefficient of x3)

Page No 63:

Answer:

 p(x)=(3x310x227x+10)p(5)=(3×5310×5227×5+10)=(375250135+10)=0p(2)=[3×(23)10×(22)27×(2)+10]=(2440+54+10)=0p13={3×133)310×13227×13+10}=(3×12710×199+10)=19109+1=110+99=09=05,2 and 13 are the zeroes of p(x).Let α=5, β=2 and γ=13. Then we have:(α+β+γ)=52+13=103=(coefficient of x2)(coefficient of x3)(αβ+βγ+γα)=1023+53=273=coefficient of xcoefficient of x3 αβγ={5×(2)×13}=103=(constant term)(coefficient of x3)

Page No 63:

Answer:

If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as
x3-a+b+cx2+ab+bc+cax-abc                                  ...(1)
Let a=2, b=-3 and c=4
Substituting the values in (1), we get
x3-2-3+4x2+-6-12+8x--24x3-3x2-10x+24

Page No 63:

Answer:

If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as
x3-a+b+cx2+ab+bc+cax-abc                                ...(1)
Let a=12, b=1 and c=-3
Substituting the values in (1), we get
x3-12+1-3x2+12-3-32x--32x3--32x2-4x+322x3+3x2-8x+3

Page No 63:

Answer:

We know the sum, sum of the product of the zeroes taken two at a time and the product of the zeroes of a cubic polynomial then the cubic polynomial can be found as
x3 −(Sum of the zeroes)x2 + (sum of the product of the zeroes taking two at a time)x − Product of zeroes
Therefore, the required polynomial is
x3-5x2-2x+24

Page No 63:

Answer:



Quotient  qx=x-3
Remainder  rx=7x-9

Page No 63:

Answer:



Quotient  qx=x2+x-3
Remainder  rx=8

Page No 63:

Answer:

We can write

fx as x4+0x3+0x2-5x+6  and gx as-x2+2



Quotient  qx=-x2-2
Remainder  rx=-5x+10

Page No 63:

Answer:

Let fx=2x4+3x3-2x2-9x-12 and gx=x2-3



Quotient  qx=2x2+3x+4
Remainder  rx=0
Since, the remainder is 0.
Hence, x2-3 is a factor of 2x4+3x3-2x2-9x-12

Page No 63:

Answer:

Let f(x) = x4 + 2x+ 8x+ 12x + 18

It is given that when f(x) is divisible by x2 + 5, the remainder comes out to be px + q.



On division, we get the quotient x2 + 2x + 3 and the remainder 2x + 3.

Since, the remainder comes out to be px + q.

Therefore, p = 2 and q = 3.

Hence, the values of p and q are 2 and 3 respectively.

Page No 63:

Answer:

By using division rule, we have
Divided = Quotient × Divisor + Remainder
3x3+x2+2x+5=3x-5gx+9x+103x3+x2+2x+5-9x-10=3x-5gx3x3+x2-7x-5=3x-5gxgx=3x3+x2-7x-53x-5



gx=x2+2x+1

Page No 63:

Answer:

We can write fx as-6x3+x2+20x+ 8 and gx as -3x2+5x+2



Quotient = 2x+3
Remainder = x+2

By using division rule, we have

Divided = Quotient × Divisor + Remainder

-6x3+x2+20x+ 8=-3x2+5x+22x+3+x+2-6x3+x2+20x+ 8=-6x3+10x2+4x-9x2+15x+6+x+2-6x3+x2+20x+ 8=-6x3+x2+20x+ 8

Page No 63:

Answer:

Let f(x)=x3+2x211x12Since -1 is a zero of f(x), (x+1) is a factor of f(x).On dividing f(x) by (x+1), we get:



f(x)=x3+2x211x12=(x+1)(x2+x12)=(x+1){x2+4x3x12}=(x+1){x(x+4)3(x+4)}=(x+1)(x3)(x+4)f(x)=0=>(x+1)(x3)(x+4)=0                  =>(x+1)=0 or (x3)=0 or (x+4)=0                  =>x=1 or x=3 or x=4Thus, all the zeroes are 1, 3 and 4.

Page No 63:

Answer:

 Let f(x)=x34x27x+10Since 1 and 2 are the zeroes of f(x), it follows that each one of (x1) and (x+2) is a factor of f(x).Consequently, (x1)(x+2)=(x2+x2) is a factor of f(x).On dividing f(x) by (x2+x2), we get:



f(x)=0=>(x2+x2)(x5)=0                 =>(x1)(x+2)(x5)=0                 =>x=1 or x=2 or x=5Hence, the third zero is 5.

Page No 63:

Answer:

 Let f(x)=x4+x311x29x+18Since 3 and 3 are the zeroes  of f(x), it follows that each one of (x+3) and (x3) is a factor of f(x).Consequently, (x3)(x+3)=(x29) is a factor of f(x).On dividing f(x) by (x29), we get:



f(x)=0 =>(x2+x2)(x29)=0                    =>(x2+2x-x-2)(x3)(x+3)                   =>(x1)(x+2)(x3)(x+3)=0                    =>x=1 or x=2 or x=3 or x=3Hence, all the zeroes are 1, 2, 3 and 3.

Page No 63:

Answer:

Let f(x) = 2x4 – 5x3 – 11x2  + 20x + 12

It is given that 2 and –2 are two zeroes of f(x)

Thus,  f(x) is completely divisible by (x + 2) and (x – 2).

Therefore, one factor of f(x) is (x2 – 4).

We get another factor of f(x) by dividing it with (x2 – 4).

On division, we get the quotient 2x2 – 5x  – 3.

f(x)=x2-42x2-5x-3          =x2-42x2-6x+x-3          =x2-42xx-3+1x-3          =x2-42x+1x-3To find the zeroes, we put f(x)=0x2-42x+1x-3=0x2-4=0 or 2x+1=0 or x-3=0x=±2, -12, 3

Hence, all the zeroes of the polynomial f(x) are 2, -2, -12 and 3.



Page No 64:

Answer:

Let f(x)=x4+x323x23x+60Since 3 and 3 are the zeroes  of f(x), it follows that each one of (x3) and (x+3) is a factor of f(x).Consequently, (x3)(x+3)=(x23) is a factor of f(x).On dividing f(x) by (x23), we get:


 f(x)=0 =>(x2+x20)(x23)=0=>(x2+5x-4x-20)(x23)=>[x(x+5)-4(x+5)](x23)=>(x4)(x+5)(x3)(x+3)=0=>x=4 or x=5 or x=3 or x=3Hence, all the zeroes are 3,3, 4 and 5.

Page No 64:

Answer:

Let f(x) = xx– 14x– 2x + 24

It is given that 2 and -2 are two zeroes of f(x)

Thus,  f(x) is completely divisible by (x + 2) and (x – 2).

Therefore, one factor of f(x) is (x2 – 2).

We get another factor of f(x) by dividing it with (x2 – 2).

On division, we get the quotient x2 + x  – 12.

f(x)=x2-2x2+x-12          =x2-2x2+4x-3x-12          =x2-2xx+4-3x+4          =x2-2x+4x-3To find the zeroes, we put f(x)=0x2-2x+4x-3=0x2-2=0 or x+4=0 or x-3=0x=±2, -4, 3

Hence, all the zeroes of the polynomial f(x) are 2, -2, -4 and 3.

Page No 64:

Answer:

Let f(x) = 2x– 13x+ 19x+ 7x – 3

It is given that 2+3 and 2-3 are two zeroes of f(x)

Thus,  f(x) is completely divisible by (x -2-3) and (x – 2+3).

Therefore, one factor of f(x) is x-22-3
one factor of f(x) is (x2 – 4x + 1)

We get another factor of f(x) by dividing it with (x2 – 4x + 1).

On division, we get the quotient 2x2 – 5x  – 3.

f(x)=x2-4x+12x2-5x-3          =x2-4x+12x2-6x+x-3          =x2-4x+12xx-3+1x-3          =x-2-3x-2+32x+1x-3To find the zeroes, we put f(x)=0x-2-3x-2+32x+1x-3=0x-2-3=0 or x-2+3=0 or 2x+1=0 or x-3=0x=2+3, 2-3, -12, 3

Hence, all the zeroes of the polynomial f(x) are 2+3, 2-3, -12 and 3.

Page No 64:

Answer:

Let f(x) = 3x3 + 16x2 + 15x – 18

It is given that one of its zeroes is 23.

Therefore, one factor of f(x) is (x – 23).

We get another factor of f(x) by dividing it with (x – 23).

On division, we get the quotient 3x+ 18x + 27.

f(x)=x-233x2+18x+27          =x-233x2+9x+9x+27          =x-233xx+3+9x+3          =x-233x+9x+3          =3x-23x+3x+3          =3x-23x+32To find the zeroes, we put f(x)=03x-23x+32=0x-23=0 or x+32=0x=23, -3

Hence, other zero of the polynomial f(x) is –3.

Page No 64:

Answer:

Let f(x) = 2x– 3x– 3x+ 6x – 2 

It is given that 1 and 12 are two zeroes of f(x).

Thus,  f(x) is completely divisible by (x – 1) and (x – 12).

Therefore, one factor of f(x) is x-1x-12
one factor of f(x) is x2-32x+12

We get another factor of f(x) by dividing it with x2-32x+12.

On division, we get the quotient 2x2 – 4.

f(x)=x2-32x+122x2-4          =x-1x-122x2-4To find the zeroes, we put f(x)=0x-1x-122x2-4=0x-1=0 or x-12=0 or 2x2-4=0x=1, 12, ±2

Hence, all the zeroes of the polynomial f(x) are 1, 12, 2 and -2.

Page No 64:

Answer:

 The given polynomial is f(x)=2x411x3+7x2+13x7.Since (3+2) and (32) are the zeroes of f(x), it follows that each one of (x+3+2) and (x+32) is a factor of f(x).Consequently, [x(3+2)] [x(32)]=[(x3)2][(x3)+2]=[(x3)22]=x26x+7, which is a factor of f(x)On dividing f(x) by(x2-6x+7), we get:


f(x)=02x411x3+7x2+13x7=0=>(x26x+7)(2x2+x1)=0=>(x+3+2)(x+32)(2x1)(x+1)=0=>x=32 or x=3+2or x=12 or x=1Hence, all the zeros are (32), (3+2), 12 and 1.



Page No 65:

Answer:

Let the other zeroes of x2-4x+1 be a.
By using the relationship between the zeroes of the quadratic ploynomial.
We have, Sum of zeroes = -coefficient of xcoefficent of x2
2+3+a=--41a=2-3
Hence, the other zeroes of x2-4x+1 is 2-3.

Page No 65:

Answer:

fx=x2+x-p(p+1)
By adding and subtracting px, we get
fx=x2+px+x-px-p(p+1)=x2+p+1x-px-p(p+1)=xx+p+1-px+(p+1)

=x+p+1x-pfx=0x+p+1x-p=0x+p+1=0 or x-p=0x=-p+1 or x=p
So, the zeros of f(x) are −(p + 1) and p.

Page No 65:

Answer:

fx=x2-3x-m(m+3)
By adding and subtracting mx, we get
fx=x2-mx-3x+mx-m(m+3)=xx-m+3+mx-(m+3)=x-m+3x+m

fx=0x-m+3x+m=0x-m+3=0 or x+m=0x=m+3 or x=-m
So, the zeros of f(x) are −m and m + 3.



Page No 66:

Answer:

If the zeroes of the quadratic polynomial are α and β then the quadratic polynomial can be found as
x2 − (α + β)x + αβ                .....(1)
Substituting the values in (1), we get
x2 − 6x + 4

Page No 66:

Answer:

Given: x = 2 is one zero of the quadratic polynomial kx2 + 3x + k
Therefore, It will satisfy the above polynomial.
Now, we have
k22+32+k=04k+6+k=05k+6=0k=-65

Page No 66:

Answer:

Given: x = 3 is one zero of the polynomial 2x2 + x + k
Therefore, It will satisfy the above polynomial.
Now, we have
232+3+k=021+k=0k=-21

Page No 66:

Answer:

Given: x = −4 is one zero of the polynomial x2x −(2k + 2)
Therefore, It will satisfy the above polynomial.
Now, we have
-42--4-2k+2=016+4-2k-2=0-2k=-18k=9

Page No 66:

Answer:

Given: x = 1 is one zero of the polynomial ax2 − 3(a − 1) x − 1
Therefore, It will satisfy the above polynomial.
Now, we have
a12-3a-11-1=0a-3a+3-1=0-2a=-2a=1

Page No 66:

Answer:

Given: x = −2 is one zero of the polynomial 3x2 + 4x + 2k
Therefore, It will satisfy the above polynomial.
Now, we have
3-22+4-2+2k=012-8+2k=0k=-2

Page No 66:

Answer:

fx=x2-x-6=x2-3x+2x-6=xx-3+2x-3

=x-3x+2fx=0x-3x+2=0x-3=0 or x+2=0x=3 or x=-2
So, the zeros of f(x) are 3 and −2.

Page No 66:

Answer:

By using the relationship between the zeros of the quadratic ploynomial.
We have
Sum of zeroes = -coefficient of xcoefficent of x2
1=--3kk=3

Page No 66:

Answer:

By using the relationship between the zeros of the quadratic ploynomial.
We have
Product of zeroes = constant termcoefficent of x2
3=k1k=3

Page No 66:

Answer:

Given: (x + a) is a factor of 2x2 + 2ax + 5x + 10
We have
x+a=0x=-a
Since, (x + a) is a factor of 2x2 + 2ax + 5x + 10
Hence, It will satisfy the above polynomial
2-a2+2a-a+5-a+10=0-5a+10=0a=2

Page No 66:

Answer:

By using the relationship between the zeroes of the cubic ploynomial.
We have
Sum of zeroes = -coefficient of x2coefficent of x3
a-b+a+a+b=--623a=3a=1

Page No 66:

Answer:

Equating x2x to 0 to find the zeros, we will get
xx-1=0x=0 or x-1=0x=0 or x=1

Since,  x3 + x2ax + b is divisible by x2x.
Hence, the zeros of x2x will satisfy x3 + x2ax + b
03+02-a0+b=0b=0

and
13+12-a1+0=0       b=0a=2

Page No 66:

Answer:

By using the relationship between the zeros of the quadratic ploynomial.
We have,
Sum of zeroes = -coefficient of xcoefficent of x2 and Product of zeroes = constant termcoefficent of x2
α+β=-72 and αβ=52Now, α+β+αβ=-72+52=-1

Page No 66:

Answer:

“If f(x) and g(x) are two polynomials such that degree of f(x) is greater than degree of g(x) where g(x) ≠ 0, then there exists unique polynomials q(x) and r(x) such that

f(x) = g(x) × q(x) + r(x),
where r(x) = 0 or degree of r(x) < degree of g(x).

Page No 66:

Answer:

We can find the quadratic polynomial if we know the sum of the roots and product of the roots by using the formula
x2 − (Sum of the zeros)x + Product of zeros
x2--12x+-3x2+12x-3
Hence, the required polynomial is x2+12x-3.

x22x+13=03x232x+1=0

Page No 66:

Answer:

To find the zeros of the quadratic polynomial we will equate f(x) to 0
fx=06x2-3=032x2-1=02x2-1=0
2x2=1x2=12x=±12
Hence, the zeros of the quadratic polynomial f(x) = 6x2 − 3 are 12,-12.

Page No 66:

Answer:

To find the zeros of the quadratic polynomial we will equate f(x) to 0
fx=043x2+5x-23=043x2+8x-3x-23=04x3x+2-33x+2=0
3x+24x-3=03x+2=0 or 4x-3=0x=-23 or x=34
Hence, the zeros of the quadratic polynomial fx=43x2+5x-23 are -23 or 34.

Page No 66:

Answer:

By using the relationship between the zeroes of the quadratic ploynomial.
We have,
Sum of zeroes = -coefficient of xcoefficent of x2 and Product of zeroes = constant termcoefficent of x2
α+β=--51 and αβ=k1α+β=5 and αβ=k1
Solving αβ = 1 and α + β = 5, we will get
α = 3 and β = 2
Substituting these values in αβ=k1, we will get
k = 6

Page No 66:

Answer:

By using the relationship between the zeroes of the quadratic ploynomial.
We have,
Sum of zeroes = -coefficient of xcoefficent of x2 and Product of zeroes = constant termcoefficent of x2
α+β=-16 and αβ=-13Now,αβ+βα=α2+β2αβ                        =α2+β2+2αβ-2αβαβ
                        =α+β2-2αβαβ                        =-162-2-13-13                        =136+23-13                        =-2512



Page No 69:

Answer:

(d) is the correct option.
A polynomial in x of degree n is an expression of the form p(x) =ao +a1x+a2x2 +...+an xn, where an 0.

Page No 69:

Answer:

(d) x+3x is not a polynomial.
It is because in the second term, the degree of x is −1 and an expression with a negative degree is not a polynomial.

Page No 69:

Answer:

 (c)3,-1Let f(x)=x22x3=0         =x23x+x3=0         =x(x3)+1(x3)=0         =(x3)(x+1)=0        =x=3 or x=1

Page No 69:

Answer:

 (b) 32,22Let f(x)=x22x12=0           =>x232x+22x12=0           =>x(x32)+22(x32)=0            =>(x32)(x+22)=0           =>x=32 or  x=22

Page No 69:

Answer:

(c) 32,24 Let f(x)=4x2+52x3=0      =>4x2+62x2x3=0      =>22x(2x+3)1(2x+3)=0      =>(2x+3)(22x1)=0      =>x=32 or x=122      =>x=32 or  x=122×22=24

Page No 69:

Answer:

(b)  32,43  Let f(x) =x2+16x2=0      =>6x2+x12=0      =>6x2+9x8x12=0      =>3x(2x+3)4(2x+3)=0      =>(2x+3)(3x4)=0         x=32 or x=43              



Page No 70:

Answer:

(a) 23,-17Let f(x)=7x2113x23=021x211x2=021x214x+3x2=07x(3x2)+1(3x2)=0(3x2)(7x+1)=0x=23 or x=17

Page No 70:

Answer:

 (c)  x23x10Given: Sum of zeroes, α+β = 3 Also, product of zeroes, αβ=-10Required polynomial=x2-(α+β)+αβ=x23x10

Page No 70:

Answer:

(c) x22x15 Here, the zeroes are 5 and 3.Let α=5 and β So, sum of the zeroes, α+β = 5+(3)=2 Also, product of the zeroes, αβ = 5×(3)=15The polynomial will be x2-(α+β)x+αβ. The required polynomial is x22x15.

Page No 70:

Answer:

(d) 10x2  x  3 Here, the zeroes are 35 and 12.Let α=35 and β=12  So, sum of the zeroes, α+β=35+12=110 Also, product of the zeroes, αβ=35×12=310The polynomial will be x2-(α+β)x+αβ.   The required polynomial is x2110x310.
Multiply by 10, we get
10x2-x-3

Page No 70:

Answer:

(b) both negative Let α and β be the zeroes of x2+88x+125.Then α+β=88 and α×β=125This can only happen when both the zeroes are negative.

Page No 70:

Answer:

(b)  -5Given: α and β are the zeroes of x2+5x+8.If α+β is the sum of the roots and αβ is the product, then the required polynimial will be x2-(α+β)+αβ. α+β=5

Page No 70:

Answer:

(c) 92   Given: α and β are the zeroes of 2x2+5x9.If α and β are the zeroes, then x2-(α+β)x+αβ is the required polynomial.The polynomial will be x2-52x-92.     ∴ αβ=92

Page No 70:

Answer:

(d) 65 Since 2 is a zero of kx2+3x+k, we have:k×(2)2+3×2+k=0=>4k+k+6=0=>5k=6=>k=65

Page No 70:

Answer:

 (b)  54 Since 4 is a zero of (k1)x2+kx+1, we have: (k1)×(4)2+k×(4)+1=0  =>16k164k+1=0=>12k15=0=>k=155124 =>k=54

Page No 70:

Answer:

 (c)  a=-2, b=-6 Given: 2 and 3 are the zeroes of x2+(a+1)x+b.  Now, (2)2+(a+1)×(2)+b=0=>42a2+b=0=>b2a=2    ...(1)Also, 32+(a+1)×3+b=0=>9+3a+3+b=0    =>b+3a=12      ...(2)On subtracting (1) from (2),  we get a=2∴ b=24=6      [From (1)]

Page No 70:

Answer:

(a) k=3 Let α and 1α be the zeroes of 3x28x+k.Then product of zeroes=k3     =>α×1α=k3     =>1=k3      =>k=3

Page No 70:

Answer:

(d) 23 Let α and β be the zeroes of kx2+2x+3k. Then α+β=2k and αβ=3kk=3     =>α+β=αβ     =>2k=3     =>k=23



Page No 71:

Answer:

 (b)  -3Since α and β are the zeroes of x2+6x+2,we have:      α+β=6 and αβ=2      (1α+1β)=(α+βαβ)=62=3

Page No 71:

Answer:

 (a) -1It is given that αβ and γ are the zeroes of x36x2x+30.   (αβ+βγ+γα)=co-efficient of x co-efficient of x3=11=1

Page No 71:

Answer:

 (a) -3 Since αβ and γ are the zeroes of 2x3+x213x+6, we have:      αβγ=(constant term)co-efficient of x3=62=3

Page No 71:

Answer:

 (c) x33x2-10x+24 Given: αβ and γ are the zeroes of polynomial p(x).Also, (α+β+γ)=3, (αβ+βγ+γα)=10 and αβγ=24p(x)=x3(α+β+γ)x2+(αβ+βγ+γα)xαβγ           =x33x2-10x+24

Page No 71:

Answer:

 (a) ba  Let α, 0 and 0 be the zeroes of ax3+bx2+cx+d=0.Then sum of the zeroes=ba        =>α+0+0=ba        =>α=ba  Hence, the third zero is ba.

Page No 71:

Answer:

(b)  ca Let α, β and 0 be the zeroes of ax3+bx2+cx+d.Then, sum of the products of zeroes taking two at at a time is given by   (αβ+β×0+α×0)=ca   =>αβ=ca   The product of the other two zeroes is ca.

Page No 71:

Answer:

(c) 1a+b      Since 1 is a zero of x3+ax2+bx+c, we have:    (1)3+a×(1)2+b×(1)+c=0   =>ab+c1=0   =>c=1a+b Also, product of all zeroes is given by  αβ×(1)=c=>αβ=c=>αβ=1a+b

Page No 71:

Answer:

(d) 2Since α and β are the zeroes of 2x2+5x+k, we have: α+β=52 and αβ=k2Also, it is given that α2+β2+αβ=214.=>(α+β)2αβ=214=>522k2=214=>254k2=214=>k2=254214=44=1=>k=2 

Page No 71:

Answer:

(c) either r(x) =0 or deg r(x)<deg g(x)By division algorithm on polynomials, either r(x)=0 or deg r(x)<deg g(x).

Page No 71:

Answer:

(d) 5x2 is a monomial. 5x2 consists of one term only. So, it is a monomial.   



Page No 75:

Answer:

(b) 3,-1
Here, p(x)=x2-2x-3

Let x2-2x-3=0=>x2-(3-1)x-3=0=>x2-3x+x-3=0=>xx-3+1x-3=0=>x-3x+1=0=>x=3,-1

Page No 75:

Answer:

(a) −1
Here, p(x) =x3-6x2-x+3

Comparing the given polynomial with x3-α+β+γx2+αβ+βγ+γαx -αβγ, we get:
 αβ+βγ+γα=-1

Page No 75:

Answer:

 (c) 23
Here, p(x)=x2-2x+3k
Comparing the given polynomial with ax2+bx+c, we get:
a=1, b=-2 and c=3k
It is given that α and β
are the roots of the polynomial.
α+ β=-ba=>α+β=--21=>α+β=2     ...(i)

Also,  αβ=ca
 =>αβ=3k1=> αβ=3k       ...(ii)Now, α+ β= αβ=>2=3k      [Using (i) and (ii)]=>k=23

Page No 75:

Answer:

 (c) 52
Let the zeroes of the polynomial be α and α+4.
Here,
p(x) =4x2-8kx+9
Comparing the given polynomial with ax2+bx+c, we get:
a = 4, b = −8k and c = 9
Now, sum of the roots=-ba
=>α+α+4=-(-8k)4=>2α+4=2k=>α+2=k=>α=(k-2)      ...(i)Also, product of the roots, αβ=ca=> α(α+4)=94 =>(k-2)(k-2+4)=94=>k-2k+2=94=>k2-4=94=>4k2-16=9=>4k2=25=>k2=254=>k=52        (k>0)

Page No 75:

Answer:

Here, p(x)= x2+2x-195

Let p(x) =0 =>x2+(15-13)x-195=0=>x2+15x-13x-195=0=>xx+15-13(x+15)=0=>x+15x-13=0=>x=-15,13Hence, the zeroes are -15 and 13.

Page No 75:

Answer:

a+9x2-13x+6a=0Here, A=a2+9, B=13 and C=6aLet α and 1α be the two zeroes.Then, product of the zeroes=CA=>α.1α=6aa2+9=>1=6aa2+9=>a2+9=6a=>a2-6a+9=0=>a2-2×a×3+32=0=>a-32=0=>a-3=0=>a=3

Page No 75:

Answer:

It is given that the two roots of the polynomial are 2 and −5.
Let α=2 and β=-5
Now, sum of the zeroes, α+β = 2 + (5) = 3
Product of the zeroes, αβ = 2×5 = 10
∴ Required polynomial = x2-(α+β)x+αβ
=x2(-3)x+(-10)=x2+3x-10

Page No 75:

Answer:

 The given polynomial =x3-3x2+x+1  and its roots are (a-b), a and (a+b).

Comparing the given polynomial with Ax3+Bx2+Cx+D, we have:A=1, B=-3, C=1 and D=1Now, (a-b)+a+(a+b)=-BA=>3 a=--31=> a=1Also, (a-b)×a×(a+b)=-DA=>aa2-b2=-11=>1(12-b2)=-1=>1-b2=-1=>b2=2=>b=±2a=1 and b=±2

Page No 75:

Answer:

Let p(x)=x3+4x2-3x-18

Now, p2=23+4×22-3×2-18=02 is a zero of p(x).

Page No 75:

Answer:

Given:
Sum of the zeroes = −5
Product of the zeroes = 6
∴ Required polynomial = x2-(sum of the zeroes)x+product of the zeroes
=x2--5x+6=x2+5x+6

Page No 75:

Answer:

Let α, β and γ be the zeroes of the required polynomial. Then we have:α+β+γ=3+5+(-2)=6αβ+βγ+γα=3×5+5×(-2)+(-2)×3=-1 and αβγ=3×5×-2=-30Now, px=x3-x2α+β+γ+xαβ+βγ+γα-αβγ         =x3-x2×6+x×-1--30          =x3-6x2-x+30So, the required polynomial is px=x3-6x2-x+30.

Page No 75:

Answer:

Given: px=x3+3x2-5x+4Now, p2 =23+3(22)-52+4               =8+12-10+4               =14

Page No 75:

Answer:

Given: fx=x3+4x2+x-6Now, f-2=-23+4-22+-2-6                  =-8+16-2-6                   =0 x+2 is a factor of fx=x3+4x2+x-6.

Page No 75:

Answer:

Given: px=6x3+3x2-5x+1                   =6x2--3x2+-5x-(-1)

Comparing the polynomial with x3-x2α+β+γ+xαβ+βγ+γα-αβγ, we get:
αβ+βγ+γα=-5 and αβγ=-11α+1β+1γ=βγ+αγ+αβαβγ=-5-1=5

Page No 75:

Answer:

Given: fx=x2-5x+kThe co-efficients are a=1, b=-5 and c=k.α+β=-ba=>α+β=-(-5)1=>α+β=5         1Also, α-β=1       2From 1 & 2, we get:2α=6=>α=3Putting the value of α in (1), we get β=2.Now, αβ=ca=>3×2=k1k=6

Page No 75:

Answer:

Let t=x2So, f(t)= t2+4t+6Now, to find the zeroes, we will equate f(t)=0.t2+4t+6=0Now, t=-4±16-242           =-4±-82           =-2±-2i.e., x2=-2±-2x=-2±-2, which is not a real number.The zeroes of a polynomial should be real numbers.The given f(x) has no zeroes.



Page No 76:

Answer:

Given: px=x3-6x2+11x-6 and its factor, x+3Let us divide px by (x-3).

Here, x3-6x2+11x-6=x-3x2-3x+2                                  =x-3 x2-2+1x+2                                  =x-3(x2-2x-x+2)                                  =x-3[xx-2-1(x-2)]                                  =x-3x-1x-2The other two zeroes are 1 and 2.

Page No 76:

Answer:

Given: px=2x4-3x3-3x2+6x-2 and the two zeroes, 2 and -2So, the polynomial is x+2x-2=x2-2.Let us divide px by x2-2.

Here, 2x4-3x3-3x2+6x-2=x2-22x2-3x+1                                           =x2-22x2-2+1x+1                                           =x2-2(2x2-2x-x+1)                                           =(x2-2)[(2x(x-1)-1(x-1)]                                           =x2-22x-1x-1The other two zeroes are 12 and 1.

Page No 76:

Answer:

Given: px=3x4+5x3-7x2+2x+2Dividing px by x2+3x+1, we have:             



The quotient  is 3x24x+2

Page No 76:

Answer:

Let px=x3+2x2+kx+3Now, p3=33+232+3k+3                 =27+18+3k+3                 =48+3kIt is given that the remainder is 213k+48=213k=-27k=-9



View NCERT Solutions for all chapters of Class 10