Rd Sharma 2022 Solutions for Class 10 Maths Chapter 11 Trigonometric Identities are provided here with simple step-by-step explanations. These solutions for Trigonometric Identities are extremely popular among Class 10 students for Maths Trigonometric Identities Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rd Sharma 2022 Book of Class 10 Maths Chapter 11 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rd Sharma 2022 Solutions. All Rd Sharma 2022 Solutions for class Class 10 Maths are prepared by experts and are 100% accurate.

Page No 529:

Question 1:

Prove the following trigonometric identities.

(1 − cos2 A) cosec2 A = 1

Answer:

We know that,

So,

 

Page No 529:

Question 2:

Prove the following trigonometric identities.

(1 + cot2 A) sin2 A = 1

Answer:

We know that,

So,

Page No 529:

Question 3:

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1

Answer:

We know that,

So,

Page No 529:

Question 4:

Prove the following trigonometric identities.

tan θ+1tan θ=sec θ cosec θ

Answer:

We know that,

So,

 

                     

 

Page No 529:

Question 5:

Prove the following trigonometric identities.

cos θ1+sin θ=1-sin θcos θ

Answer:

We know that,

Multiplying the both numerator and the denominator by, we have


 

Page No 529:

Question 6:

Prove the following trigonometric identities.

cos2 A+11+cot2 A=1

Answer:

We know that,

So,



Page No 530:

Question 7:

Prove the following trigonometric identities.

1-cos θsin θ=sin θ1+cos θ

Answer:

We have to prove .

We know that,

Multiplying both numerator and denominator by , we have

Page No 530:

Question 8:

Prove the following trigonometric identities.

sin θ1-cos θ=cosec θ+cot θ

Answer:

We have to prove .

We know that,

Multiplying both numerator and denominator by , we have

Page No 530:

Question 9:

Prove the following trigonometric identities.

1-sin θ1+sin θ=secθ-tanθ2

Answer:

We have to prove

We know that, .

Multiplying both numerator and denominator by , we have

 

              

Page No 530:

Question 10:

Prove the following trigonometric identities.

1+cot2θ tanθsec2θ=cotθ

Answer:

We have to prove

We know that,

So,

Page No 530:

Question 11:

Prove the following trigonometric identities.

tan2θ − sin2θ = tan2θ sin2θ

Answer:

We have to prove

We know that,

So,

                       

Page No 530:

Question 12:

Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1

Answer:

We have to prove

We know that,

So,

                                                

Page No 530:

Question 13:

Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1

Answer:

We have to prove

We know that,

So,

Page No 530:

Question 14:

Prove the following trigonometric identities.

1+sin θcos θ+cos θ1+sin θ=2 sec θ

Answer:

We have to prove

We know that,

Multiplying the denominator and numerator of the second term by , we have

                              

Page No 530:

Question 15:

Prove the following trigonometric identities.

1+sinθ2+1- sinθ22 cos2θ=1+sin2θ1-sin2θ

Answer:

We have to prove that .

We know that,

So,

                                      

Page No 530:

Question 16:

Prove the following trigonometric identities.

1+tan2θ1+cot2θ=1-tanθ1-cotθ2=tan2θ

Answer:

We have to prove

Consider the expression

                

Again, we have

                    

Page No 530:

Question 17:

Prove the following trigonometric identities.

1+secθsecθ=sin2θ1-cosθ

Answer:

We have to prove

We know that,

Multiplying the numerator and denominator by , we have

Page No 530:

Question 18:

Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1

Answer:

We need to prove

Solving the L.H.S, we get

         

Further using the identity, we get

Hence proved.

Page No 530:

Question 19:

Prove the following trigonometric identities.

secA-tanAsecA+tanA=cos2A1+sinA2

Answer:

We need to prove

Here, we will first solve the LHS.

Now, using , we get

Further, multiplying both numerator and denominator by , we get

Now, using the property, we get

So,

= RHS

Hence proved.

Page No 530:

Question 20:

Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ

Answer:

We have to prove

We know that,

So,

Page No 530:

Question 21:

Prove the following trigonometric identities.

(i) 1+sin A1-sin A=sec A+tan A

(ii) 

Answer:

(i) We need to prove

Here, rationalising the L.H.S, we get

Further using the property, , we get

So,

Hence proved.

(ii) We need to prove 

Here, rationaliaing the L.H.S, we get

Further using the property, , we get

So,

Hence proved.

Page No 530:

Question 22:

Prove that:

(i) secθ-1secθ+1+secθ+1secθ-1=2 cosecθ

(ii) 1+sinθ1-sinθ+1-sinθ1+sinθ=2 secθ
 

Answer:

(i) We have,

​

                                     

                                     

(ii) We have,

                                    

Page No 530:

Question 23:

Prove the following trigonometric identities.

tan2 A1+tan2 A+cot2 A1+cot2 A=1

Answer:

In the given question, we need to prove .

Here, we will first solve the LHS.

Now, using , we get

On further solving by taking the reciprocal of the denominator, we get,

Hence proved.

Page No 530:

Question 24:

Prove the following trigonometric identities.

1+cos θ-sin2 θsin θ (1+cos θ)=cot θ

Answer:

In the given question, we need to prove .

Using the property , we get

So,

1+cosθ-sin2θsinθ1+cosθ=1+cosθ-1-cos2θsinθ1+cosθ=cosθ+cos2θsinθ1+cosθ

Solving further, we get

Hence proved.

 

Page No 530:

Question 25:

Prove the following trigonometric identities.

tan2 A + cot2 A = sec2 A cosec2 A − 2

Answer:

In the given question, we need to prove

Now, using and in L.H.S, we get

Further, using the identity, we get

Since L.H.S = R.H.S

Hence proved.

Page No 530:

Question 26:

tanA1+secA-tanA1-secA=2cosecA

Answer:

Consider the LHS.
tanA1+secA-tanA1-secA=tanA1-secA-tanA1+secA1+secA1-secA=tanA-tanAsecA-tanA-tanAsecA1-sec2A=-2tanAsecA1-sec2A=-2tanAsecA-tan2A=2secAtanA=2cosecA
= RHS
Hence proved.

Page No 530:

Question 27:

Prove the following trigonometric identities.

1+cot2 θ1+cosec θ=cosec θ

Answer:

In the given question, we need to prove

Using and, we get

Further, using the property , we get

Hence proved.

Page No 530:

Question 28:

Prove the following trigonometric identities.

cos θcosec θ+1+cos θcosec θ-1=2 tan θ

Answer:

In the given question, we need to prove

Using the identity, we get

Further, using the property , we get

                                              

Hence proved.

Page No 530:

Question 29:

Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1

Answer:

We have to prove

We know that,

So,

Page No 530:

Question 30:

Prove the following trigonometric identities.

1+tan2A+1+1tan2A=1sin2A-sin4A

Answer:

We need to prove .

Using the property , we get

Now, using , we get

Further, using the property, , we get

Hence proved.

Page No 530:

Question 31:

Prove the following trigonometric identities.

cot2 A cosec2 B − cot2 B cosec2 A = cot2 A − cot2 B

Answer:

We have to prove

We know that,

So,

Hence proved.

Page No 530:

Question 32:

Prove the following trigonometric identities.

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2y2 = a2b2

Answer:

Given that,

We have to prove

We know that,

So,

Hence proved. 

Page No 530:

Question 33:

Prove the following trigonometric identities.

If cosec θ + cot θ = m and cosec θ − cot θ = n, prove that mn = 1

Answer:

Given:

We have to prove

We know that,

Multiplying the two equations, we have

 


Hence proved.

Page No 530:

Question 34:

Prove the following trigonometric identities.

(i) 1+cos θ+sin θ1+cos θ-sin θ=1+sin θcos θ
(ii) sin θ-cos θ+1sin θ+cos θ-1=1sec θ-tan θ
(iii) cos θ-sin θ+1cos θ+sin θ-1=cosec θ+cot θ
(iv) sinθ+cosθtanθ+cotθ=secθ+cosecθ

Answer:

(i) We have to prove the following identity-

Consider the LHS.

1+cosθ+sinθ1+cosθ-sinθ

  

= RHS

Hence proved.

(ii) We have to prove the following identity-

Consider the LHS.

sinθ-cosθ+1sinθ+cosθ-1

   
 

              (Divide numerator and denominator by)

RHS

Hence proved.

(iii) We have to prove the following identity-

cos θ - sin θ + 1cos θ + sin θ - 1 = cosec θ + cot θ

Consider the LHS.

cos θ - sin θ + 1cos θ + sin θ - 1

=cos θ - sin θ + 1cos θ + sin θ - 1×cos θ + sin θ + 1cos θ + sin θ + 1=cos θ + 12 - sinθ2cos θ + sin θ2 - 12=cos2θ+ 1 + 2 cos θ - sin2θcos2θ + sin2θ + 2 cos θ sin θ - 1=cos2θ+ 1 + 2 cos θ - 1 - cos2θ1 + 2 cos θ sin θ - 1 =2 cos2θ + 2 cos θ2 cos θ sin θ=2 cos θ cos θ + 12 cos θ sin θ=cos θ + 1sin θ=cos θsin θ + 1sin θ=cot θ + cosec θ

= RHS

Hence proved.

(iv)
Consider the LHS.
sinθ+cosθtanθ+cotθ=sinθ+cosθsinθcosθ+cosθsinθ=sinθ+cosθsin2θ+cos2θsinθ×cosθ=sinθ+cosθsinθ×cosθ                       sin2θ+cos2θ=1=1cosθ+1sinθ=secθ+cosecθ
= RHS
Hence proved.

Page No 530:

Question 35:

Prove the given identities:

1+secθ-tanθ1+secθ+tanθ=1-sinθcosθ

Answer:

(ii)Consider the LHS.

1+secθ-tanθ1+secθ+tanθ=secθ-tanθ+11+secθ+tanθ=secθ-tanθ+sec2θ-tan2θ1+secθ+tanθ                           sec2θ-tan2θ=1=secθ-tanθ1+secθ+tanθ1+secθ+tanθ=secθ-tanθ=1cosθ-sinθcosθ=1-sinθcosθ
= RHS

Hence proved.



Page No 531:

Question 36:

Prove the following trigonometric identities.

1+cot A+tan A sin A-cos A=sec Acosec2 A-cosec Asec2 A=sin A tan A-cot A cos A

Answer:

We have prove that



We know that,

So,

             

             

             

             

Now,

                              

Hence proved.

Page No 531:

Question 37:

Prove the following trigonometric identities.

tan3 θ1+tan2 θ+cot3 θ1+cot2 θ=sec θ cosec θ-2 sin θ cos θ

Answer:

In the given question, we need to prove

Using the property and, we get

Taking the reciprocal of the denominator, we get

Further, using the identity, we get

Hence proved.

Page No 531:

Question 38:

Prove the following trigonometric identities.

tan A1+tan2 A2+cot A1+cot2 A=sin A cos A

Answer:

We have to prove

We know that, .

So,



  

 
 

Hence proved.

Page No 531:

Question 39:

Prove the given identities:

1+sin θ-cos θ1+sin θ+cos θ2=1-cos θ1+cos θ

Answer:

(i) In the given question, we need to prove

Taking common from the numerator and the denominator of the L.H.S, we get

Now, using the property , we get

Using , we get

Taking common from the numerator, we get

Using and , we get

Now, using the property , we get

Hence proved.

Page No 531:

Question 40:

Prove the following trigonometric identities.

If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ − 3 cos θ = ± 3.

Answer:

Given:

We have to prove that 5sin θ – 3cos θ = ±3.

We know that,

Squaring the given equation, we have



⇒                                                   (5sin θ – 3cos θ)2 = 9
⇒                                                       5sin θ – 3cos θ = ±3

Hence proved.

 

Page No 531:

Question 41:

If sinθ+2cosθ=1 prove that 2sinθ-cosθ=2.

Answer:

It is given that,
sinθ+2cosθ=12cosθ=1-sinθ                 .....iSquaring both sides, we get2cosθ2=1-sinθ24cos2θ=1+sin2θ-2sinθ4cos2θ=1+sin2θ-2sinθ-1+14cos2θ=2-2sinθ-1-sin2θ4cos2θ=2-2sinθ-cos2θ5cos2θ=21-sinθ 5cos2θ=4cosθ               Using (i)cosθ5cosθ-4=0cosθ=0, cosθ=45 Putting cosθ=4 5 in sinθ+2cosθ=1, we getsinθ=1-2cosθ=1-245=-35This is not possible. Putting cosθ=0  in sinθ+2cosθ=1, we getsinθ=1Thus, the value of 2sinθ-cosθ=21-0=2.

Page No 531:

Question 42:

Prove the following trigonometric identities.

If Tn=sinn θ+cosn θ, prove that T3-T5T1=T5-T7T3

Answer:

In the given question, we are given

We need to prove

Here L.H.S is

Now, solving the L.H.S, we get

Further using the property, we get

So,

Now, solving the R.H.S, we get

So,

Further using the property, we get,

So,

Hence proved.

Page No 531:

Question 43:

Prove the following trigonometric identities.

If a cos3 θ + 3 a cos θ sin2 θ = m, a sin3 θ + 3 a cos2 θ sin θ = n, prove that (m + n)2/3 + (mn)2/3 = 2a2/3

Answer:

Given that,

We have to prove

Adding both the equations, we get

Also.

Therefore, we have

Hence proved.

Page No 531:

Question 44:

Prove the following trigonometric identities.

If x = a cos3 θ, y = b sin3 θ, prove that xa2/3+yb2/3=1

Answer:

Given:

We have to prove

We know that

So, we have



Hence proved.

Page No 531:

Question 45:

Prove the following trigonometric identities.

If a cos θ + b sin θ = m and a sin θ − b cos θ = n, prove that a2 + b2 = m2 + n2

Answer:

Given:



We have to prove

We know that,

Now, squaring and adding the two equations, we get



Hence proved.

Page No 531:

Question 46:

Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1

Answer:

Given:

We have to prove

Now,

Therefore, we have



Hence proved.

Page No 531:

Question 47:

If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1

Answer:

Given:

We have to prove

From the given equation, we have

 

Therefore, we have

 

Hence proved.

Page No 531:

Question 48:

Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ

Answer:

Given:

Let us assume that

We know that,

Then, we have

Therefore, we have

Taking the expression with the positive sign, we have

Page No 531:

Question 49:

If sin θ + cos θ = x, prove that sin6θ+cos6θ=4-3 x2-124.

Answer:

Given:

Squaring the given equation, we have

Squaring the last equation, we have

Therefore, we have


                       

Hence proved.

Page No 531:

Question 50:

If x = a sec θ cos Ď•, y = b sec θ sin Ď• and z = c tan θ, show that x2a2+y2b2-z2c2=1.

Answer:

Given:


We have to prove that .

Squaring the above equations and then subtracting the third from the sum of the first two, we have


 


Hence proved.



Page No 536:

Question 1:

If sin θ=12, find all other trigonometric ratios of angle θ.

Answer:

Given:

We have to find all the trigonometric ratios.

We have the following right angle triangle.

From the above figure,

Base=Hypotenuse2-Perpendicular2BC=AC2-AB2BC=22-12BC=1

Page No 536:

Question 2:

If tan θ=12, find the value of cosec2 θ-sec2 θcosec2 θ+cot2 θ.

Answer:

Given:
We have to find the value of the expression

We know that,

Therefore, the given expression can be written as

Hence, the value of the given expression is .

Page No 536:

Question 3:

If 4tanθ = 3, evaluate 4sin θ-cos θ+14sin θ+cos θ-1

Answer:

Given: 4tanθ = 3 ⇒ tan θ = 34
Let us suppose a right angle triangle ABC right angled at B, with one of the acute angle θ. Let the sides be BC = 3and AB = 4k, where k is a positive number.

By Pythagoras theorem, we get
AC2=BC2+AB2AC2=3k2+4k2AC2=9k2+16k2AC=25k2AC=±5k
Ignoring AC = − 5k , as k is a positive number, we get
AC = 5k
If tanθ=BCAB=34, then sinθ=BCAC=35 and cosθ=ABAC=45
Putting the values in 4sinθ-cosθ+14sinθ+cosθ-1, we get
4×35-45+14×35+45-1=12-4+5512+4-55=1311

Page No 536:

Question 4:

If tan θ=125, find the value of 1+sin θ1-sin θ.

Answer:

Given:
We have to find the value of the expression .

From the above figure, we have

Therefore,

Hence, the value of the given expression is 25.

Page No 536:

Question 5:

If cot θ=13, find the value of 1-cos2 θ2-sin2 θ.

Answer:

Given:
We have to find the value of the expression

We know that,

Using the identity , we have

Hence, the value of the given expression is 35.

Page No 536:

Question 6:

If cosec A=2, find the value of 2 sin2 A+3 cot2 A4tan2 A-cos2 A.

Answer:

Given:
We have to find the value of the expression

We know that,

Therefore,

Hence, the value of the given expression is 2.

Page No 536:

Question 7:

If cot θ=3, find the value of cosec2 θ+cot2 θcosec2 θ-sec2 θ.

Answer:

Given:

We have to find the value of the expression .

We know that,

Therefore,

Hence, the value of the given expression is 218.

Page No 536:

Question 8:

If 3cosθ = 1, find the value of 6 sin2 θ+tan2 θ4 cos θ

Answer:

Given:

We have to find the value of the expression .

We have,




Therefore,

Hence, the value of the expression is 10.



Page No 537:

Question 9:

If 3 tan θ=3 sin θ, find the value of sin2θ − cos2θ.

Answer:

Given:

We have to find the value of .

Therefore,

Hence, the value of the expression is 13.

Page No 537:

Question 10:

If cosec θ=1312, find the value of 2 sin θ-3 cos θ4 sin θ-9 cos θ.

Answer:

Given:

We have to find the value of the expression .

Now,

Therefore,

Hence, the value of the expression is 3.

Page No 537:

Question 11:

If sin θ + cos θ = 2 cos 90°-θ, find cot θ.

Answer:

Given:

We have to find the value of .

Now,

Hence,

Page No 537:

Question 12:

If 2 sin2θ - cos2θ = 2  , then find the value of θ . 

Answer:

It is given that,
2sin2θ-cos2θ=22sin2θ-2=cos2θ-21-sin2θ=cos2θ -2cos2θ=cos2θ                        1-sin2θ=cos2θ3cos2θ=0cosθ=0θ=90°

Page No 537:

Question 13:

If 3tan θ-1=0, find the value of sin2θ – cos2θ.

Answer:

Given: 3tan θ-1=0,
tanθ=13tanθ=tan30°θ=30°

Therefore, sin2θ-cos2θ=sin230°-cos230°=122-322=14-34=-24=-12

Page No 537:

Question 1:

Define an identity.

Answer:

An identity is an equation which is true for all values of the variable (s).

For example,

Any number of variables may involve in an identity.

An example of an identity containing two variables is

The above are all about algebraic identities. Now, we define the trigonometric identities.

An equation involving trigonometric ratios of an angle (say) is said to be a trigonometric identity if it is satisfied for all valued of for which the trigonometric ratios are defined.

For examples,

sin2θ+cos2θ=11+tan2θ=sec2θ1+cot2θ=cosec2θ

Page No 537:

Question 2:

What is the value of (1 − cos2 θ) cosec2 θ?

Answer:

We have,

Page No 537:

Question 3:

What is the value of (1 + cot2 θ) sin2 θ?

Answer:

We have,

Page No 537:

Question 4:

What is the value of sin2 θ+11+tan2 θ?

Answer:

We have,

Page No 537:

Question 5:

Write the value of cosec2 (90° − θ) − tan2 θ.

Answer:

We have,

We know that,

Therefore, cosec290°-θ-tan2θ=1

Page No 537:

Question 6:

Write the value of sin A cos (90° − A) + cos A sin (90° − A).

Answer:

We have,

We know that,

Therefore, sinAcos90°-A+cosAsin90°-A=1

Page No 537:

Question 7:

Write the value of cot2 θ-1sin2 θ.

Answer:

We have,

We know that,

Therefore, cot2θ-1sin2θ=-1

Page No 537:

Question 8:

If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?

Answer:

Given:

x = a sinθ and y = b cosθ

So,

b2x2+a2y2=b2asinθ2+a2bcosθ2=a2b2sin2θ+a2b2cos2θ=a2b2sin2θ+cos2θ

We know that,

Therefore, b2x2+a2y2=a2b2

Page No 537:

Question 9:

If sin θ=45, what is the value of cotθ + cosecθ?

Answer:

Given:

We know that,


We have,

Hence, the value of cotθ + cosecθ is 2.

Page No 537:

Question 10:

What is the value of 9cot2 θ − 9cosec2 θ?

Answer:

We have,

We know that,

Therefore, 9cot2θ-9cosec2θ=-9

Page No 537:

Question 11:

What is the value of 6 tan2θ-6cos2θ.

Answer:

We have,

We know that,

Therefore, 6 tan2θ-6cos2θ=-6

Page No 537:

Question 12:

What is the value of tan2 θ-sec2 θcot2 θ-cosec2 θ.

Answer:

We have,

We know that,

Therefore,

Page No 537:

Question 13:

What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?

Answer:

We have,

We know that,

Therefore,

Page No 537:

Question 14:

If cos A=725, find the value of tan A + cot A.

Answer:

Given:

We know that,

 

Therefore,

 
                    

Page No 537:

Question 15:

If sin θ=13, then find the value of 2cot2 θ + 2.

Answer:

Given:

We know that,

Therefore,

Page No 537:

Question 16:

If cos θ=34, then find the value of 9tan2 θ + 9.

Answer:

Given:

We know that,

Therefore,

Page No 537:

Question 17:

If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.

Answer:

Given:

Hence, the value of k is 1.



Page No 538:

Question 18:

If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.

Answer:

Given:

Thus, the value of λ is 1.

Page No 538:

Question 19:

If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.

Answer:

Given:

We know that,

Therefore,


Hence,

Page No 538:

Question 20:

If cosec θ − cot θ = α, write the value of cosec θ + cot α.

Answer:

Given:

We know that,

Therefore,

 
Hence,

Page No 538:

Question 21:

If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.

Answer:

Given:


λ=1×1=1

Hence, the value of λ is 1.

Page No 538:

Question 22:

If 5x = sec θ and 5x=tan θ, find the value of 5x2-1x2.

Answer:

Given:

We know that,

 

Page No 538:

Question 23:

If cosec θ = 2x and cot θ=2x, find the value of 2x2-1x2.

Answer:

Given:

We know that,

 

Page No 538:

Question 24:

 Write True' or False' and justify your answer in each of the following :
(i) The value of sin θ is x + 1x, where 'x'  is a positive real number .
(ii) cos θ = a2 + b22ab, where a and b are two distinct numbers such that ab > 0.

(iii) The value of cos223 - sin267 is positive .

(iv) The value of the expression sin 80° - cos 80°  is negative .

(v) The value of sin θ + cos θ  is always greater than 1 .

Answer:

(i)
sinθ=x+1x-1x+1x1x+1x1x2+1xx2+1-x0Take x= 1,1+1-1010Which is false, so x is not always a positive real number.The given statement is false.

(ii)
It is given that,
cosθ=a2+b22abSince, a-b2=a2+b2-2ab>0  a-b2>0, a and b are distint numbersa2+b2>2aba2+b22ab>1cosθ>1But, -1cosθ1Therefore, the given statement is false.

(iii)
cos223°-sin267°=sin290°-23°-sin267°=sin267°-sin267°=0
Which is not positive, the given statement is false.

(iv)
Consider the table.

θ 30º 45º 60º 90º
sinθ 0 12 12 32 1
cosθ 1 32 12 12 0

Here,
sin60°-cos60°=32-12>0sin90°-cos90°=1-0>0So, sin80°-cos80°>0          sinθ-cosθ0 45°θ90°
Therefore, the given statement is false.

(v)
Consider the table.
θ 30º 45º 60º 90º
sinθ 0 12 12 32 1
cosθ 1 32 12 12 0
Here,
sin90°+cos90°=1+0=1, which is not greater than 1Therefore, the given statement is false.

Page No 538:

Question 25:

What is the value of cos2 67° – sin2 23°?

Answer:

cos267°-sin223°=cos267°-sin290°-67°=cos267°-cos267°                    sin290-θ=cos2θ=0

Page No 538:

Question 1:

If cos 80°sin10°+cos59° cosec 31°=____________.

Answer:

cos80°sin10°+cos59°cosec31°
=cos90°-10°sin10°+cos59°cosec90°-59°=sin10°sin10°+cos59°sec59°=1+cos59°×1cos59°=1+1=2

Page No 538:

Question 2:

The value of sin θ cos(90° – θ) + cos θ sin (90° – θ) is ___________.

Answer:


sinθcos90°-θ+cosθsin90°-θ=sinθ×sinθ+cosθ×cosθ                  cos90°-θ=sinθ and sin90°-θ=cosθ=sin2θ+cos2θ=1

The value of sin θ cos(90° – θ) + cos θ sin (90° – θ) is _____1_____.

Page No 538:

Question 3:

The value of sin4θ-cos4θsin2θ-cos2θ is ____________.

Answer:


sin4θ-cos4θsin2θ-cos2θ=sin2θ2-cos2θ2sin2θ-cos2θ=sin2θ-cos2θsin2θ+cos2θsin2θ-cos2θ            a2-b2=a-ba+b
=sin2θ+cos2θ=1

The value of sin4θ-cos4θsin2θ-cos2θ is ______1______.

Page No 538:

Question 4:

If 11+sin θ+11-sin θ=k sec2 θ, then the value of k is _________.

Answer:


11+sinθ+11-sinθ=1-sinθ+1+sinθ1+sinθ1-sinθ=21-sin2θ
=2cos2θ              cos2θ+sin2θ=1=2sec2θ

Comparing with the given expression, we get

k = 2

If 11+sin θ+11-sin θ=k sec2 θ, then the value of k is ____2____.

Page No 538:

Question 5:

If 1-cos2θ sec2θ=k tan θ and 0 < θ < 90°, then k = ________.

Answer:


1-cos2θsec2θ=sin2θcos2θ                  sin2θ+cos2θ=1=tan2θ=tanθ

Comparing with the given expression, we get

k = 1

If 1-cos2θ sec2θ=k tan θ and 0 < θ < 90°, then k = ____1____.

Page No 538:

Question 6:

If cosec θ + cot θ = 3, then cos θ = _________.

Answer:


cosecθ+cotθ=31sinθ+cosθsinθ=31+cosθsinθ=3
1+cosθ=3sinθ
Squaring on both sides, we get
1+cos2θ+2cosθ=91-cos2θ10cos2θ+2cosθ-8=05cos2θ+cosθ-4=05cos2θ+5cosθ-4cosθ-4=0
5cosθcosθ+1-4cosθ+1=0cosθ+15cosθ-4=0cosθ+1=0 or 5cosθ-4=0cosθ=45      cosθ cannot be negative in first quadrant

If cosec θ + cot θ = 3, then cos θ =    45     .

Page No 538:

Question 7:

If cosec θ – cot θ = 2, then find the value of cosec2 + cot2θ is ______.

Answer:

We know that,

cosec2θ-cot2θ=1cosecθ-cotθcosecθ+cotθ=12cosecθ+cotθ=1             Givencosecθ+cotθ=12
Now,
cosecθ-cotθ2+cosecθ+cotθ2=22+122cosec2θ+cot2θ-2cosecθcotθ+cosec2θ+cot2θ+2cosecθcotθ=4+142cosec2θ+cot2θ=174cosec2θ+cot2θ=178

If cosec θ – cot θ = 2, then find the value of cosec2θ + cot2θ is       178      .

Page No 538:

Question 8:

If sec θ + tan θ = m, then the value of sec4 θ – tan4 θ – 2 sec θ tan θ is _________.

Answer:


sec4θ-tan4θ-2secθtanθ=sec2θ-tan2θsec2θ+tan2θ-2secθtanθ=sec2θ+tan2θ-2secθtanθ                        1+tan2θ=sec2θ=secθ-tanθ2
=secθ+tanθsecθ-tanθsecθ+tanθ2=sec2θ-tan2θsecθ+tanθ2=1m2=1m2

If sec θ + tan θ = m, then the value of sec4 θ – tan4 θ – 2 sec θ tan θ is      1m2     .



Page No 539:

Question 9:

The value of cos4θ+cos2θ sin2θ+sin2θcos2θ+cos2θ sin2θ+sin4θ is __________.

Answer:


cos4θ+cos2θsin2θ+sin2θcos2θ+cos2θsin2θ+sin4θ=cos2θ2+cos2θsin2θ+sin2θcos2θ+cos2θsin2θ+sin4θ=1-sin2θ2+cos2θsin2θ+sin2θcos2θ+cos2θsin2θ+sin4θ=1+sin4θ-2sin2θ+cos2θsin2θ+sin2θcos2θ+cos2θsin2θ+sin4θ
=1-sin2θ+sin4θ+cos2θsin2θcos2θ+cos2θsin2θ+sin4θ=cos2θ+cos2θsin2θ+sin4θcos2θ+cos2θsin2θ+sin4θ=1

The value of cos4θ+cos2θsin2θ+sin2θcos2θ+cos2θsin2θ+sin4θ is _____1_____.

Page No 539:

Question 10:

If sin θ – cos θ = 35, then sin θ cos θ = _______.

Answer:


sinθ-cosθ=35
Squaring on both sides, we get
sinθ-cosθ2=352sin2θ+cos2θ-2sinθcosθ=9251-2sinθcosθ=9252sinθcosθ=1-925=1625
sinθcosθ=825

If sin θ – cos θ = 35, then sin θ cos θ =       825      .

Page No 539:

Question 11:

The value of sin22° + sin24° + sin26° + ... + sin290° is ____________.

Answer:


sin22° + sin24° + sin26° + ... + sin290°

= sin22° + sin24° + sin26° + ... + sin284° + sin286° + sin288°+ sin290°

= [(sin22° + sin288°) + (sin24° + sin286°) + (sin26° + sin284°) + .... 22 pair of terms] + sin290°

= [(sin22° + cos22°) + (sin24° + cos24°) + (sin26° + cos26°) + .... 22 pair of terms] + sin290°                 [sin(90º − θ) = cosθ]

= (1 + 1 + 1 + ... 22 terms) + 1                              [sin2θ + cos2θ = 1 and sin90° = 1]

= 22 + 1

= 23

The value of sin22° + sin24° + sin26° + ... + sin290° is ______23______.

Page No 539:

Question 12:

If sin2θ-3sinθ+2cos2θ=1, then θ =_______.

Answer:


sin2θ-3sinθ+2cos2θ=1sin2θ-3sinθ+2=1-sin2θ2sin2θ-3sinθ+1=0
2sin2θ-2sinθ-sinθ+1=02sinθsinθ-1-1sinθ-1=0sinθ-12sinθ-1=0sinθ-1=0 or 2sinθ-1=0
sinθ=1 or sinθ=12θ=90° or θ=30°
Here, θ cannot take the value 90º. For θ=90°, the LHS of the given equation is not defined.

Thus, the value of θ is 30°.

If sin2θ-3sinθ+2cos2θ=1, then θ =       30°   .

Page No 539:

Question 13:

If cos θ + cos2θ = 1, then sin2θ + sin4θ = _________.

Answer:


cosθ+cos2θ=1cosθ=1-cos2θcosθ=sin2θ
Squaring on both sides, we get
cos2θ=sin4θ1-sin2θ=sin4θsin2θ+sin4θ=1

If cos θ + cos2θ = 1, then sin2θ + sin4θ = ____1_____.

Page No 539:

Question 14:

If tan3θ-1tanθ-1=A sec2θ+B tan θ, then A+B=_______.

Answer:


tan3θ-1tanθ-1=tanθ-1tan2θ+tanθ+1tanθ-1             a3-b3=a-ba2+ab+b2=tan2θ+tanθ+1=sec2θ+tanθ                                        1+tan2θ=sec2θ

Comparing with the given expression, we get

A = 1 and B = 1

A + B = 2

If tan3θ-1tanθ-1=A sec2θ+B tan θ, then A+B=    2   .

Page No 539:

Question 15:

The value of (cosec θ – sin θ)  (secθ – cos θ) (tan θ + cot θ) is _________.

Answer:


cosecθ-sinθsecθ-cosθtanθ+cotθ=1sinθ-sinθ1cosθ-cosθsinθcosθ+cosθsinθ=1-sin2θsinθ1-cos2θcosθsin2θ+cos2θsinθcosθ
=cos2θsinθ×sin2θcosθ×1sinθcosθ              cos2θ+sin2θ=1=1

The value of (cosec θ – sin θ)  (secθ – cos θ) (tan θ + cot θ) is ___1___.

Page No 539:

Question 16:

-4+8+16 cosec4θ+sin4θ=A cosec θ+B sin θ, then A = _______ and B = _________.

Answer:


-4+8+16cosec4θ+sin4θ=-4+4cosec2θ2+2×4cosec2θ×sin2θ+sin2θ2=-4+4cosec2θ+sin2θ2
=-4+4cosec2θ+sin2θ=2cosecθ2-2×2cosecθ×sinθ+sin2θ=2cosecθ-sinθ2=2cosecθ-sinθ

Comparing with the given expression, we get

A = 2 and B = −1

-4+8+16 cosec4θ+sin4θ=A cosec θ+B sin θ, then A =   2   and B = -1  .

Page No 539:

Question 17:

If (tan θ + 2) (2tan θ + 1) = A tan θ + B sec2θ, then AB = _________.

Answer:


tanθ+22tanθ+1=2tan2θ+tanθ+4tanθ+2=2tan2θ+1+5tanθ=2sec2θ+5tanθ                   1+tan2θ=sec2θ

Comparing with the given expression, we get

A = 5 and B = 2

AB = 5 × 2 = 10

If (tan θ + 2) (2tan θ + 1) = A tan θ + B sec2θ, then AB = ____10____.

Page No 539:

Question 18:

If 2 sin θ + 3 cos θ = 2, then 3 sin θ – 2 cos θ = _________.

Answer:


2sinθ+3cosθ2+3sinθ-2cosθ2=4sin2θ+9cos2θ+12sinθcosθ+9sin2θ+4cos2θ-12sinθcosθ=13sin2θ+13cos2θ=13sin2θ+cos2θ=13                                  sin2θ+cos2θ=1
22+3sinθ-2cosθ2=13                 2sinθ+3cosθ=23sinθ-2cosθ2=13-4=93sinθ-2cosθ=±3

If 2 sin θ + 3 cos θ = 2, then 3 sin θ – 2 cos θ = ____±3_____.

Page No 539:

Question 19:

If sin4 A – cos4 A = 1 and 0 < A ≤ 90°, then A = __________.

Answer:


sin4A-cos4A=1sin2A-cos2Asin2A+cos2A=1sin2A-cos2A=1                             sin2θ+cos2θ=11-sin2A+cos2A=0
2cos2A=0cosA=0A=90°

If sin4 A – cos4 A = 1 and 0 < A ≤ 90°, then A =      90°     .



View NCERT Solutions for all chapters of Class 10