Rs Aggarwal 2019 Solutions for Class 10 Math Chapter 1 Real Numbers are provided here with simple step-by-step explanations. These solutions for Real Numbers are extremely popular among Class 10 students for Math Real Numbers Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rs Aggarwal 2019 Book of Class 10 Math Chapter 1 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rs Aggarwal 2019 Solutions. All Rs Aggarwal 2019 Solutions for class Class 10 Math are prepared by experts and are 100% accurate.

Page No 8:

Answer:

Euclid's division algorithm states that for any two positive integers a and b, there exist unique integers and r, such that a = bq + r, where 0 ≤ < b.

Page No 8:

Answer:

We know, Dividend = Divisor × Quotient + Remainder
 Given: Divisor = 61, Quotient = 27, Remainder = 32
Let the Dividend be x.
∴ x = 61 × 27 + 32
        = 1679
Hence, the required number is 1679.

Page No 8:

Answer:

Given: Dividend = 1365, Quotient = 31, Remainder = 32
Let the divisor be x.
Dividend = Divisor × Quotient + Remainder
                       1365 =  × 31 + 32
   ⇒                1365 − 32 = 31x
   ⇒                      1333 = 31x

   ⇒                        x = 133331 = 43
Hence, 1365 should be divided by 43 to get 31 as quotient and 32 as remainder.

Page No 8:

Answer:

(i)

On applying Euclid's algorithm, i.e. dividing 2520 by 405, we get:
         Quotient = 6, Remainder = 90
         ∴ 2520 = 405 × 6 + 90
   Again on applying Euclid's algorithm, i.e. dividing 405 by 90, we get:
          Quotient = 4, Remainder = 45
          ∴ 405 = 90 × 4 + 45
      Again on applying Euclid's algorithm, i.e. dividing 90 by 45, we get:
         ∴ 90 = 45 × 2 + 0                                                                      
                                                                                                                      
Hence, the HCF of 2520 and 405 is 45.

(ii)

On applying Euclid's algorithm, i.e. dividing 1188 by 504, we get:
       Quotient = 2, Remainder = 180
         ∴ 1188 = 504 × 2 +180                                 
    Again on applying Euclid's algorithm, i.e. dividing 504 by 180, we get:                           
        Quotient = 2, Remainder = 144                             
            ∴ 504 = 180× 2 + 144                                       
   Again on applying Euclid's algorithm, i.e. dividing 180 by 144, we get:                        
        Quotient = 1, Remainder = 36                                        
              ∴ 180 = 144 × 1 + 36                                          
 Again on applying Euclid's algorithm, i.e. dividing 144 by 36, we get:                         
             ∴ 144 = 36 × 4 + 0                                               

Hence, the HCF of 1188 and 504 is 36.  
                                                                                                 
(iii)

On applying Euclid's algorithm, i.e. dividing 1575 by 960, we get:
         Quotient = 1, Remainder = 615           
        ∴ 1575 = 960 × 1 + 615                          
    Again on applying Euclid's algorithm, i.e. dividing 960 by 615, we get:                         
       Quotient = 1, Remainder = 345                   
        ∴ 960 = 615 × 1 + 345                         
  Again on applying Euclid's algorithm, i.e. dividing 615 by 345, we get:                     
     Quotient = 1, Remainder = 270                                       
       ∴ 615 = 345 × 1 + 270                     
 Again on applying Euclid's algorithm, i.e. dividing 345 by 270, we get:                   
    Quotient = 1, Remainder = 75        
      ∴ 345 = 270 × 1 + 75                        
Again on applying Euclid's algorithm, i.e. dividing 270 by 75, we get:                                       
   Quotient = 3, Remainder = 45                                                                                   
      ∴270 = 75 × 3 + 45                                                                 
 Again on applying Euclid's algorithm, i.e. dividing 75 by 45, we get:                          
   Quotient = 1,  Remainder = 30                                                                                                
     ∴ 75  = 45 × 1 + 30                                                                                             
Again on applying Euclid's algorithm, i.e. dividing 45 by 30, we get:
  Quotient = 1, Remainder = 15
     ∴ 45  = 30 × 1 + 15
Again on applying Euclid's algorithm, i.e. dividing 30 by 15, we get:
 Quotient = 2, Remainder = 0
   ∴ 30 = 15 × 2 + 0

Hence, the HCF of 960 and 1575 is 15.                                                                              

Page No 8:

Answer:

Let us assume that there exist a smallest positive integer that is neither odd nor even, say n. Since n is the least positive integer which is neither even nor odd, n − 1 must be either odd or even.

Case 1: If n − 1 is even, n − 1 = 2k for some k.
             But this implies n = 2k + 1
             this implies n is odd.

Case 2: If n − 1 is odd, n − 1 = 2k + 1 for some k.
             But this implies n = 2k + 2 = 2(k + 1)
             this implies n is even.

In both ways we have a contradiction.
Thus, every positive integer is either even or odd.

Page No 8:

Answer:

Let n be any arbitrary positive odd integer.
On dividing n by 6, let m be the quotient and r be the remainder. So, by Euclid's division lemma, we have

n = 6m + r, where 0 ≤ r < 6.

As 0 ≤ r < 6 and r is an integer, r can take values 0, 1, 2, 3, 4, 5.
⇒ n = 6m or n = 6m + 1 or n = 6m + 2 or n = 6m + 3 or n = 6m + 4 or n = 6m + 5

But n ≠ 6m or n ≠ 6m + 2 or n ≠ 6m + 4 (∵ 6m, 6m + 2, 6m + 4 are multiples of 2, so an even interger whereas n is an odd integer)

n = 6m + 1 or n = 6m + 3 or n = 6m + 5

Thus, any positive odd integer is of the form (6m + 1) or (6m + 3) or (6m + 5), where m is some integer.

Page No 8:

Answer:

Let n be any arbitrary positive odd integer.
On dividing n by 4, let m be the quotient and r be the remainder. So, by Euclid's division lemma, we have

n = 4m + r, where 0 ≤ r < 4.

As 0 ≤ r < 4 and r is an integer, r can take values 0, 1, 2, 3.
⇒ n = 4m or n = 4m + 1 or n = 4m + 2 or n = 4m + 3

But n ≠ 4m or n ≠ 4m + 2 (∵ 4m, 4m + 2 are multiples of 2, so an even interger whereas n is an odd integer)

n = 4m + 1 or n = 4m + 3

Thus, any positive odd integer is of the form (4m + 1) or (4m + 3), where m is some integer.

Page No 8:

Answer:

Euclid's division lemma states that for given positive integers a and b, there exists unique integers q and r satisfying a=bq+r, 0r<b
Applying Euclid's division lemma om and 6, we have 
n=6q+r, 0r<6
Therefore, n can have six values, i.e.
n=6qn=6q+1n=6q+2n=6q+3n=6q+4n=6q+5
Case I: When n=6q
n3=(6q)3n3-n=(6q)3-6q=6q(36q2-1)=6m where m=q(36q2-1)
Hence, n=6q, n3-n is divisible by 6

Case II:
When n=6q+1
n3=(6q+1)3n3-n=(6q+1)3-(6q+1)=(6q+1)(6q+1)2-1=(6q+1)36q2+1+12q-1=(6q+1)36q2+12q=216q3+72q2+36q2+12q=636q3+18q2+2q=6m (where m=36q2+18q+2q)Hence,  n=6q+1, n3-n is divisible by 6

Case III: When n=6q+2
n3=(6q+2)3n3-n=(6q+2)3-(6q+2)=(6q+2)(6q+2)2-1=(6q+2)36q2+4+24q-1=(6q+2)36q2+24q+3=216q3+144q2+18q+72q2+48q+6=216q3+216q2+66q+6=636q3+36q2+11q+1=6m (where m=36q3+36q2+11q+1)Hence, n=6q+1, n3-n is divisible by 6

Case IV: When n=6q+3
n3=(6q+3)3n3-n=(6q+3)3-(6q+3)=(6q+3)(6q+3)2-1=(6q+3)36q2+9+36q-1=(6q+3)36q2+36q+8=216q3+216q2+48q+108q2+108q+24=216q3+324q2+156q+24=636q3+54q2+26q+4=6m
Hence,  n=6q+3, n3-n is divisible by 6.

Case V: When n=6q+4
n3=(6q+4)3n3-n=(6q+4)3-(6q+4)=(6q+4)(6q+4)2-1=(6q+4)36q2+16+48q-1=(6q+4)36q2+48q+15=216q3+288q2+90q+144q2+192q+60=216q3+432q2+282q+60=636q3+72q2+47q+10=6m (where m=36q3+72q2+47q+10)
Hence,  n=6q+4, n3-n is divisible by 6.

Case VI: When n=6q+5
n3=(6q+5)3n3-n=(6q+5)3-(6q+5)=(6q+5)(6q+5)2-1=(6q+5)36q2+25+60q-1=(6q+5)36q2+60q+24=216q3+360q2+144q+180q2+300q+120=216q3+540q2+444q+120=636q3+90q2+74q+120=6m  (where m=36q3+90q2+74q+120)
Hence,  n=6q+5, n3-n is divisible by 6.

Page No 8:

Answer:

Let, be any positive odd integer and let x=n and y=n+2.
So, x2+y2=(n)2+(n+2)2
Or, x2+y2=n2+(n2+4+4n)
x2+y2=2n2+4+4nx2+y2=2(n2+2+2n)
x2+y2=2m (where m=n2+2n+2)
Because x2+y2 has 2 as a factor, so the value is an even number.
Also, because it does not have any multiple of 4 as a factor, therefore, it is not divisible by 4.

Page No 8:

Answer:

Using Euclid's division algorithm, we have


Since 1445 > 1190, we apply Euclid's division lemma to 1445 and 1190 to get;
1445=1190×1+255
Since the remainder is not zero, we again apply division lemma to 1190 and 255 and get;
1190=255×4+170
Again, the remainder is not zero, so we apply division lemma to 255 and 170 to get;
255=170×1+85
Now we finally apply division lemma to 170 and 85 to get;
170=85×2+0
Since, in this step, 85 completely divides 170 leaving zero remainder, we stop the procedure.
Hence, the HCF is 85. 
Now, using the above division, we have
170×1+85=25585=255-170×185=(1445-1190×1)-(1190-255×4)85=(1445-1190)-1190-(1445-1190)×485=(1445-1190)-1190-1445×4+1190×485=1445-1190-1190×5-1445×485=1445-1190-1190×5+1445×485=1445×5-1190×6
Or, 85=1190(-6)+1445(5)
Hence, m=-6, n=5



Page No 15:

Answer:

(i) 36, 84
   Prime factorisation:
   36 = 22 ⨯ 32
   84 = 22 ⨯ 3 ⨯ 7
​ HCF = product of smallest power of each common prime factor in the numbers = 22 ⨯ 3 = 12
 LCM = product of greatest power of each prime factor involved in the numbers = 22 ⨯ 32 ⨯ 7 = 252

(ii) 23, 31
   Prime factorisation:
   23 = 23
   31 = 31
​ HCF = product of smallest power of each common prime factor in the numbers = 1
 LCM = product of greatest power of each prime factor involved in the numbers = 23 ⨯ 31 = 713

(iii) 96, 404
   Prime factorisation:
   96 = 25 ⨯ 3
   404 = 22 ⨯ 101
​ HCF = product of smallest power of each common prime factor in the numbers = 22 = 4
 LCM = product of greatest power of each prime factor involved in the numbers = 25 ⨯ 3 ⨯ 101 = 9696

(iv) 144, 198
   Prime factorisation:
   144 = 24 × 32
  198 = 2 × 32 × 11
​ HCF = product of smallest power of each common prime factor in the numbers = 2 × 32 = 18
 LCM = product of greatest power of each prime factor involved in the numbers = 24 × 32 × 11 = 1584

(v) 396, 1080
    Prime factorisation:
   396 = 22 × 32  × 11
  1080 = 23 × 33 × 5
 ​ HCF = product of smallest power of each common prime factor in the numbers = 22 × 32 = 36
LCM = product of greatest power of each prime factor involved in the numbers = 23 × 33 × 5 ×11 = 11880

(vi) 1152 , 1664
    Prime factorisation:
   1152 = 27 × 32
  1664 = 27 × 13
HCF = product of smallest power of each common prime factor involved in the numbers = 27 = 128
 LCM = product of greatest power of each prime factor involved in the numbers = 27 × 32 × 13 = 14976

Page No 15:

Answer:

(i) 8 = 2 ⨯ 2 ⨯ 2 = 23
     9 = 3 ⨯ 3 = 32
     25 = 5 ⨯ 5 = 52
HCF = Product of smallest power of each common prime factor in the numbers = 1
LCM = Product of the greatest power of each prime factor involved in the numbers = 2⨯ 32 ⨯ 52 = 1800

(ii) 12 = 2 ⨯ 2 ⨯ 3 = 22 ⨯ 3
      15 = 3 ⨯ 5
      21 = 3 ⨯ 7
HCF = Product of smallest power of each common prime factor in the numbers = 3
LCM = Product of the greatest power of each prime factor involved in the numbers = 22 ⨯ 3 ⨯ 5 ⨯ 7 = 420

(iii) 17 = 17
       23 = 23
       29 = 29
HCF = Product of smallest power of each common prime factor in the numbers = 1
LCM = Product of the greatest power of each prime factor involved in the numbers = 17 ⨯ 23 ⨯ 29 = 11339

(iv) 24 = 2× 2 × 2 ×3 = 23 × 3
    36 = 2 × 2 ×3 × 3 = 22 × 32
    40 =  2 × 2 ×2 × 5 = 23 × 5
  ∴ ​HCF = Product of smallest power of each common prime factor in the numbers = 22 = 4
 ∴​ LCM = Product of the greatest power of each prime factor involved in the numbers =  23×32×5 = 360

(v) 30 = 2 × 3 × 5
     72 = 2 × 2 × 2 × 3 × 3 = 23 × 32
    432 = 2 × 2 × 2 × 2 × 3 × 3× 3 = 24 × 33
  ∴ HCF = Product of smallest power of each common prime factor in the numbers = 2 × 3 = 6
  ∴ ​LCM = Product of the greatest power of each prime factor involved in the numbers = 24 × 33 × 5 = 2160

(vi) 21 = 3 × 7
     28  = 28 = 2 × 2 × 7 = 22 × 7
     36 = 2 × 2 × 3 × 3 = 22 × 32
     45 = 5 × 3 × 3 = 5 × 32
   ∴​ HCF = Product of smallest power of each common prime factor in the numbers = 1
   ∴​ LCM = Product of the greatest power of each prime factor involved in the numbers = 22 × 32 × 5 × 7 = 1260



Page No 16:

Answer:

Let the two numbers be and b.
​Let the value of a be 161.
Given: HCF = 23 and LCM = 1449
we know,        × b = HCF ​× LCM 
            ⇒     161 × b = 23 × 1449
            ⇒              ∴ b =   23 × 1449   =   33327  = 207
                                          161                  161
   Hence, the other number b is 207.

Page No 16:

Answer:

HCF of two numbers = 145
LCM of two numbers = 2175
Let one of the two numbers be 725 and other be x.

Using the formula, Product of two numbers = HCF × LCM
we conclude that

725 × x = 145 × 2175
x = 145×2175725
   = 435

Hence, the other number is 435.

Page No 16:

Answer:

​HCF of two numbers = 18
Product of two numbers = 12960
Let their LCM be x.

Using the formula, Product of two numbers = HCF × LCM
we conclude that

12960 = 18 × x
x1296018
   = 720

Hence, their LCM is 720.

Page No 16:

Answer:

​No, it is not possible to have two numbers whose HCF is 18 and LCM is 760.

Since, HCF must be a factor of LCM, but 18 is not a factor of 760.

Page No 16:

Answer:

(i) Prime factorisation of 69 and 92 is:

69 = 3 × 23
92 = 22 × 23

Therefore, 6992=3×2322×23=322=34
Thus, simplest form of 6992 is 34.

(ii) Prime factorisation of 473 and 645 is:

473 = 11 × 43
645 = 3 × 5 × 43

Therefore, 473645=11×433×5×43=1115
Thus, simplest form of 473645 is 1115.

(iii) Prime factorisation of 1095 and 1168 is:

1095 = 3 × 5 × 73
1168 = 24 × 73

Therefore, 10951168=3×5×7324×73=1516
Thus, simplest form of 10951168 is 1516.

(iv) Prime factorisation of 368 and 496 is:

368 = 24 × 23
496 = 24 × 31

Therefore, 368496=24×2324×31=2331
Thus, simplest form of 368496 is 2331.

Page No 16:

Answer:

Largest number which divides 438 and 606, leaving remainder 6 is actually the largest number which divides 438 − 6 = 432 and 606 − 6 = 600, leaving remainder 0.

Therefore, HCF of 432 and 600 gives the largest number.

Now, prime factors of 432 and 600 are:
432 = 24 × 33 
600 = 2× 3 × 52

HCF = product of smallest power of each common prime factor in the numbers = 2× 3 = 24

Thus, the largest number which divides 438 and 606, leaving remainder 6 is 24.

Page No 16:

Answer:

We know that the required number divides 315 (320 − 5) and 450 (457 − 7).
∴ Required number = HCF (315, 450)
On applying Euclid's lemma, we get:
                              315) 450 (1
                                     −​ 315  
                                       135) 315 (2
                                           −   270 
                                                 45) 135 (3
                                                     −​ 135 
                                                          0
Therefore, the HCF of 315 and 450 is 45.
Hence, the required number is 45.

Page No 16:

Answer:

Least number which can be divided by 35, 56 and 91 is LCM of 35, 56 and 91.

Prime factorization of 35, 56 and 91 is:

35 = 5 × 7
56 = 2× 7
91 = 7 × 13

LCM = product of greatest power of each prime factor involved in the numbers = 2× 5 × 7 × 13 = 3640

Least number which can be divided by 35, 56 and 91 is 3640.

Least number which when divided by 35, 56 and 91 leaves the same remainder 7 is 3640 + 7 = 3647.

Thus, the required number is 3647.

Page No 16:

Answer:

Let the required number be x.

Using Euclid's lemma,
x = 28p + 8 and x = 32q + 12, where p and q are the quotients
⇒ 28p + 8 = 32q + 12
⇒ 28p = 32q + 4
⇒ 7p = 8q + 1 ..... (1)

Here p = 8n − 1 and q = 7n − 1 satisfies (1), where n is a natural number
On putting n = 1, we get
p = 8 − 1 = 7 and q = 7 − 1 = 6

Thus, x = 28p + 8
             = 28 × 7 + 8
             = 204

Hence, the smallest number which when divided by 28 and 32 leaves remainders 8 and 12 is 204.

Page No 16:

Answer:

The smallest number which when increased by 17 is exactly divisible by both 468 and 520 is obtained by subtracting 17 from the LCM of 468 and 520.

Prime factorization of 468 and 520 is:
468 = 2× 32 × 13
520 = 23 × 5 × 13

LCM = product of greatest power of each prime factor involved in the numbers = 23 × 32 × 5 × 13 = 4680

The required number is 4680 − 17 = 4663.

Hence, the smallest number which when increased by 17 is exactly divisible by both 468 and 520 is 4663.

Page No 16:

Answer:

Prime factorization:

15 = 3 × 5
24 = 23 × 3
36 = 22 × 32

LCM = product of greatest power of each prime factor involved in the numbers = 23 × 32 × 5 = 360

Now, the greatest four digit number is 9999.
On dividing 9999 by 360 we get 279 as remainder.
Thus, 9999 − 279 = 9720 is exactly divisible by 360.

Hence, the greatest number of four digits which is exactly divisible by 15, 24 and 36 is 9720.

Page No 16:

Answer:

Largest 4 digit number is 9999
To find the largest 4 digit number divisible by 4, 7 and 13, we find the LCM of 4, 7 and 13 first. 
LCM(4, 7, 13) = 4×7×13 = 364
Now, to we divide 9999 by 364 and subtract the remainder from 9999 to get the number completely divisible by 4, 7 and 13.

9999-171=9828 
Because the number leaves the remainder 3, so we add 3 to 9828. 
Therefore, 9828 + 3 = 9831 is the required number.

Page No 16:

Answer:

We find the LCM of 5, 6, 4 and 3 first.​

So, LCM(5,6,4,3)=2×2×3×5=60
Now, divide 2497 by 60, we get

To make the number completely divisible by 60, we must add a number that would make the remainder equal to 60.
Therefore, the number that must be added is 60 - 37 = 23
Hence, 23 must be added to 2497. 
So, the number exactly divisible by 5, 6, 4 and 3 is 2497 + 23 = 2520

Page No 16:

Answer:

We need to find the greatest number that would divide 43, 91 and 183 leaving the same remainder every time.
We first find the difference of the numbers and then find the HCF of the got numbers.
183-91=92183-43=14091-43=48
Now find HCF of 92, 140 and 48, we get
92=2×2×23140=2×2×5×748=2×2×2×2×3
HCF(92, 140, 48) = 4
Therefore, 4 is the required number. 

Page No 16:

Answer:

First find the LCM of 20, 25, 35 and 40.

LCM(20, 25, 35, 40)=2×2×2×5×5×7=1400
Now, we can see that
20-14=625-19=635-29=640-34=6
​So, the required number would beLCM(20, 25, 35, 40)-6 
=1400-6=1394

Page No 16:

Answer:

Minimum number of rooms required = Total number of participantsHCF(60,84,108)

Prime factorization of 60, 84 and 108 is:

60 = 2× 3 × 5
84 = 2× 3 × 7
108 = 2× 33

HCF = product of smallest power of each common prime factor in the numbers = 2× 3 = 12

Total number of paricipants = 60 + 84 + 108 = 252

Therefore, minimum number of rooms required = 25212=21

Thus, minimum number of rooms required is 21.



Page No 17:

Answer:

Total number of English books = 336
Total number of mathematics books = 240
Total number of science books = 96
∴ Number of books stored in each stack = HCF (336, 240, 96) 
Prime factorisation:
336 = 24 × 3 × 7
240 = 24 × 3 × 5
96 = 25 × 3
∴ HCF = Product of the smallest power of each common prime factor involved in the numbers = 24 × 3 = 48
Hence, we made stacks of 48 books each.

∴ Number of stacks = 33648 + 24048 +  9648 = (7 + 5 + 2) = 14

Page No 17:

Answer:

The lengths of three pieces of timber are 42 m, 49 m and 63 m, respectively.
We have to divide the timber into equal length of planks.
∴ Greatest possible length of each plank = HCF(42, 49, 63)
Prime factorisation:
42 = 2 × 3 × 7
49 = 7 × 7
63 = 3 × 3 × 7
∴ HCF = Product of smallest power of each common prime factor in the numbers = 7
Therefore, the greatest possible length of each plank is 7 m.
Now, to find the total number of planks formed by each of the piece, we divide the length of each piece by the HCF, i.e. by 7.
We know that;
7×6=427×7=497×9=63
Therefore, total number of planks formed=6+7+9=22
Hence, total 22 planks will be formed.

Page No 17:

Answer:

The three given lengths are 7 m (700 cm), 3 m 85 cm  (385 cm) and 12 m 95 cm (1295 cm).   (∵ 1 m = 100 cm)
∴ Required length = HCF (700, 385, 1295)
Prime factorisation:
700 = 2 × 2 × 5 × 5 × 7 = 22 × 52 × 7
385 = 5 × 7 × 11
1295 = 5 × 7 × 37
∴ HCF = 5 × 7 = 35
Hence, the greatest possible length is 35 cm.

Page No 17:

Answer:

Total number of pens = 1001
Total number of pencils = 910
∴​ Maximum number of students who get the same number of pens and pencils = HCF (1001, 910)
Prime factorisation:
1001 = 11×91
  910 = 10×91
∴ HCF = 91
Hence, 91 students receive same number of pens and pencils.

Page No 17:

Answer:

It is given that:
Length of a tile = 15 m 17 cm = 1517 cm                  [∵ 1 m = 100 cm]
Breadth of a tile = 9 m 2 cm = 902 cm
∴ Side of each square tile = HCF (1517, 902)
Prime factorisation:
1517 = 37 × 41                                                                                                             
902 = 22 × 41                                                                                          
∴ HCF = Product of smallest power of each common prime factor in the numbers = 41             
∴ Required number of tiles = Area of ceilingArea of one tile1517 × 90241 × 41 = 37 × 22 = 814

Page No 17:

Answer:

Length of the three measuring rods are 64 cm, 80 cm and 96 cm, respectively.
∴ Length of cloth that can be measured an exact number of times = LCM (64, 80, 96) 
Prime factorisation:
64 = 26
80 = 24 × 5
96 = 25 × 3
∴ LCM = Product of greatest power of  each prime factor involved in the numbers = 26 × 3 × 5 = 960 cm = 9.6 m
Hence, the required length of cloth is 9.6 m.

Page No 17:

Answer:

Beep duration of first device = 60 seconds
Beep duration of second device = 62 seconds
∴ Interval of beeping together = LCM (60, 62) 
Prime factorisation:
60 = 22 × 3 × 5
62 = 2 × 31
∴ LCM = 22 × 3 × 5 × 31 = 1860 seconds = 186060 = 31 min
Hence, they will beep together again at 10 : 31 a.m.

Page No 17:

Answer:

We find the LCM of 48, 72 and 108 first to get the time after which they will blink together again. 

Hence, LCM = 2×2×2×2×3×3×3=432
So, they will blink again at 432 seconds past 8:00 am
or, 43260=7 minutes and 12 seconds past 8:00 am 
So, the time will be 08:07:12 hrs

Page No 17:

Answer:

Six bells toll together at intervals of 2, 4, 6, 8, 10 and 12 minutes, respectively.
Prime factorisation:
2 = 24 = 2 × 26 = 2 × 38 = 2 × 2 × 210 = 2 × 512 = 2 × 2 × 3

∴ ​LCM ( 2, 4, 6, 8, 10, 12 ) = 23 × 3 × 5 = 120
Hence, after every 120 minutes (i.e. 2 hours), they will toll together.
∴ Required number of times = (302 + 1) = 16



Page No 24:

Answer:

(i) 2323× 52 = 23×523×53=1151000 = 0.115
We know either 2 or 5 is not a factor of 23, so it is in its simplest form.
Moreover, it is in the form of (2m×5n).
Hence, the given rational is terminating.

(ii) 24125 = 2453 = 24 × 2353× 23 = 1921000 = 0.192
 We know 5 is not a factor of 23, so it is in its simplest form.
Moreover, it is in the form of (2m × 5n).
Hence, the given rational is terminating.

(iii) 171800 = 171 25 × 52 = 171 × 5325 × 55 = 21375100000 = 0.21375
     We know either 2 or 5 is not a factor of 171, so it is in its simplest form.
     Moreover, it is in the form of (2m ×5n).
    Hence, the given rational is terminating.

(iv)  151600 = 1526 × 52 = 15 × 5426 × 56 = 93751000000 = 0.009375
    We know either 2 or 5 is not a factor of 15, so it is in its simplest form.
    Moreover, it is in the form of (2m × 5n).
   Hence, the given rational is terminating.

(v)  17320 = 1726 × 5 = 17 × 5526 × 56 = 531251000000 = 0.053125
     We know either 2 or 5 is not a factor of 17, so it is in its simplest form.
     Moreover, it is in the form of (2m × 5n).
    Hence, the given rational is terminating.

(vi) 193125 = 1955 = 19 × 2555 × 25= 608100000 = 0.00608
    We know either 2 or 5 is not a factor of 19, so it is in its simplest form.
    Moreover, it is in the form of (2m × 5n).
   Hence, the given rational is terminating. 

Page No 24:

Answer:

(i) 1123 × 3
    We know either 2 or 3 is not a factor of 11, so it is in its simplest form.
   Moreover, (23 × 3) ≠ (2m × 5n)
  Hence, the given rational is non-terminating repeating decimal.

(ii) 7322 × 33 ×5
   We know 2, 3 or 5 is not a factor of 73, so it is in its simplest form.
   Moreover, (22 × 33 × 5) ≠ (2m × 5n)
  Hence, the given rational is non-terminating repeating decimal.

(iii) 12922 × 57 × 75
      We know 2, 5 or 7 is not a factor of 129, so it is in its simplest form.
      Moreover, (22 × 57 × 75) ≠ (2m × 5n)
      Hence, the given rational is non-terminating repeating decimal.

 (iv) 935 = 95 × 7
    We know either 5 or 7 is not a factor of 9, so it is in its simplest form.
   Moreover, (5 × 7) ≠ (2m × 5n)
   Hence, the given rational is non-terminating repeating decimal.


(v) 77210 = 77 ÷ 7210 ÷ 7 = 1130 = 112 × 3 × 5
     We know 2, 3 or 5 is not a factor of 11, so 1130 is in its simplest form.
    Moreover, (2 × 3 × 5) ≠ (2m × 5n)
    Hence, the given rational is non-terminating repeating decimal.

(vi) 32147 = 323 × 72
     We know either 3 or 7 is not a factor of 32, so it is in its simplest form.
     Moreover, (3 × 72) ≠ (2m × 5n)
     Hence, the given rational is non-terminating repeating decimal.

(vii) 29343 = 2973
      We know 7 is not a factor of 29, so it is in its simplest form.
      Moreover, 73 ≠ (2m × 5n)
     Hence, the given rational is non-terminating repeating decimal.

(viii) 64455 = 645 × 7 × 13
     We know 5, 7 or 13 is not a factor of 64, so it is in its simplest form.
     Moreover, (5 × 7 × 13) ≠ (2m × 5n)
     Hence, the given rational is non-terminating repeating decimal.

Page No 24:

Answer:

                  
(i) Let x =  0.8
∴ x = 0.888                                             ...(1)
10x = 8.888                                            ...(2)
On subtracting equation (1) from (2), we get
9x = 8  ⇒ x = 89 
               
0.8 = 89
                   
(ii) Let x = 2.4
∴ x = 2.444                                         ...(1)
10x24.444                                      ...(2)
On subtracting equation (1) from (2), we get
 9x22 ⇒ x = 229
             
∴ 2.4229
                      
(iii) Let x = 0.24
∴​ x = 0.2424                                   ...(1)
100x24.2424                              ...(2)
 On subtracting equation (1) from (2), we get
 99x24   ⇒ x833
       
 ∴ 0.24  = 833
                     
(iv) Let x=0.12¯
10x=1.22222...                       ...(1)100x=12.22222...                  ...(2)

On subtracting equation (1) from (2), we get
100x-10x=(12.22222...)-(1.22222...)90x=11x=1190
                      
(v) Let x = 2.24  
∴  x = 2.2444                               ...(1)
10x = 22.444                              ...(2)
100x224.444                          ...(3)       
On subtracting equation (2) from (3), we get
90x = 202  ⇒ x =2029010145
                 
Hence, 2.2410145
                       
(vi) Let x = 0.365
∴ x = 0.3656565                          ...(1)
10x3.656565                       ...(2)
1000x365.656565                 ...(3)
On subtracting (2) from (3), we get
990x362  ⇒ x = 362 990= 181495
                    
    Hence, 0.365181495



Page No 33:

Answer:

Rational numbers: The numbers of the form pq where p , q are integers and q ≠ 0 are called rational numbers.
     Example: 23
Irrational numbers: The numbers which when expressed in decimal form are expressible as non-terminating and non-repeating decimals are called irrational numbers.
     Example: 2
Real numbers: The numbers which are positive or negative, whole numbers or decimal numbers and rational number or irrational number are called real numbers.
     Example: 2, 132, −3 etc.

Page No 33:

Answer:

(i) 227 is a rational number because it is of the form of pq , q≠ 0.

(ii) 3.1416 is a rational number because it is a terminating decimal.

(iii) π is an irrational number because it is a non-repeating and non-terminating decimal.
                     
(iv) 3.142857  is a rational number because it is a repeating decimal.

(v) 5.636363... is a rational number because it is a non-terminating, repeating decimal.

(vi) 2.040040004... is an irrational number because it is a non-terminating and non-repeating decimal.

(vii) 1.535335333... is an irrational number because it is a non-terminating and non-repeating decimal.

(viii) 3.121221222... is an irrational number because it is a non-terminating and non-repeating decimal.

(ix) 21 = 3 × 7 is an irrational number because 3 and 7 are irrational and prime numbers.

(x) 33 is an irrational number because 3 is a prime number. So, 3 is an irrational number.

Page No 33:

Answer:

(i) Let 6 = 2 × 3 be rational.
   Hence,  2, 3 are both rational.
   This contradicts the fact that 2, 3 are irrational.
   The contradiction arises by assuming 6 is rational.
  Hence, 6 is irrational.

(ii) Let 2 - 3 be rational.
    Hence, 2 and 2 - 3 are rational.
    ∴ (2 - 2 + 3) = 3 = rational   [∵ Difference of two rational is rational]
     This contradicts  the fact that 3 is irrational.
     The contradiction arises by assuming 2 - 3 is rational.
Hence, 2 - 3 is irrational.

(iii) Let 3 + 2 be rational.
  Hence, 3 and 3 + 2 are rational.
    ∴ 3 + 2 - 3 = 2 = rational   [∵ Difference of two rational is rational]
     This contradicts the fact that 2 is irrational.
     The contradiction arises by assuming 3 + 2 is rational.
    Hence, 3 + 2 is irrational.

(iv) Let 2 + 5 be rational.
  Hence, 2 + 5 and 5 are rational.  
     ∴   (2 + 5 ) -2= 2   + 5 - 2 = 5 = rational         [∵ Difference of two rational is rational]
       This contradicts the fact that 5 is irrational.
    The contradiction arises by assuming 2 -5 is rational.
   Hence, 2 - 5 is irrational.

(v) Let, 5 + 32 be rational.
      Hence, 5 and 5 + 32 are rational.
     ∴ (5 + 32 - 5)  = 32 = rational       [∵ Difference of two rational is rational]
       ∴ 13× 32 = 2 = rational            [∵ Product of two rational is rational]
      This contradicts the fact that 2 is irrational.
      The contradiction arises by assuming 5 + 32 is rational.
     Hence,  5 + 32 is irrational.

(vi) Let 37 be rational.
      ∴ 13× 37 = 7 = rational           [∵ Product of two rational is rational]
    This contradicts the fact that 7 is irrational.
    The contradiction arises by assuming 37 is rational.
    Hence, 37 is irrational.

(vii) Let 35 be rational.
     ∴ 13× 35 = 15 = rational         [∵ Product of two rational is rational]
   This contradicts the fact that 15 is irrational.
∴ 1×55×5  = 155
So, if 15 is rational, then 155 is rational.
∴ 5 ×155 = 5 = rational           [∵ Product of two rational is rational]
  Hence, 15 is irrational.
The contradiction arises by assuming 35 is rational.
Hence, 35 is irrational.

(viii) Let 2 - 35 be rational.
      Hence 2 and 2 - 35 are rational.
 ∴ 2 -(2 - 35 ) = 2 - 2 + 35 = 35 = rational   [∵ Difference of two rational is rational]
 ∴ 13×35 = 5 = rational                                      [∵ Product of two rational is rational]
This contradicts the fact that 5 is irrational.
The contradiction arises by assuming 2 - 35 is rational.
Hence, 2 - 35 is irrational.

(ix) Let 3 + 5 be rational.
    ∴ 3 + 5 = a, where a is rational
                    ∴  3 = a - 5                                ... (1)
   On squaring both sides of equation (1), we get
                              3 = ( a - 5)2 = a2 + 5 - 25a 
  ⇒                       5 = a2+22a     
This is impossible because right-hand side is rational, whereas the left-hand side is irrational.
This is a contradiction.
Hence, 3 + 5 is irrational.                                                                                              



Page No 34:

Answer:

Let 13 be rational.
∴ 13 = ab, where a, b are positive integers having no common factor other than 1
∴ 3 = ba                           ...(1)
Since a, b are non-zero integers, ba is rational.
Thus, equation (1)  shows that 3 is rational.
This contradicts the fact that 3 is rational.
The contradiction arises by assuming 3 is rational.
Hence, 13 is irrational.

Page No 34:

Answer:

(i) Let (2 + 3), ( 2 - 3)  be two irrationals. 
  ∴ (2 + 3) + ( 2 - 3) = 4 = rational number

(ii) Let 23 , 33 be two irrationals. 
   ∴  23 × 33 = 18 = rational number

Page No 34:

Answer:

(i) True
(ii) True
(iii) False 
Counter example: 2 + 3 and 2 - 3 are two irrational numbers. But their sum is 4, which is a rational number.
(iv) False
Counter example: 23 and  43 are two irrational numbers. But their product is 24, which is a rational number.
(v) True
(vi) True

Page No 34:

Answer:

Let x23-1 be a rational number.

x=23-1x2=23-12x2=232+12-2231x2=12+1-43x2-13=-4313-x24=3
Since x is a rational number, x2 is also a rational number.
⇒ 13 − xis a rational number
⇒ 13-x24 is a rational number
⇒ 3 is a rational number
But 3 is an irrational number, which is a contradiction.
Hence, our assumption is wrong.

Thus,  (23-1) is an irrational number.

Page No 34:

Answer:

​Let x = 4-52 be a rational number.

x=4-52x2=4-522x2=42+522-2452x2=16+50-402x2-66=-40266-x240=2
Since x is a rational number, x2 is also a rational number.
⇒ 66 − xis a rational number
⇒ 66-x240 is a rational number
⇒ 2 is a rational number
But 2 is an irrational number, which is a contradiction.
Hence, our assumption is wrong.

Thus,  (4-52) is an irrational number.

Page No 34:

Answer:

​​Let x = 5-23 be a rational number.

x=5-23x2=5-232x2=52+232-2523x2=25+12-203x2-37=-20337-x220=3
Since x is a rational number, x2 is also a rational number.
⇒ 37 − xis a rational number
⇒ 37-x220 is a rational number
⇒ 3 is a rational number
But 3 is an irrational number, which is a contradiction.
Hence, our assumption is wrong.

Thus,  (5-23) is an irrational number.

Page No 34:

Answer:

Let 52 is a rational number.

∴ 52=pq, where p and q are some integers and HCF(pq) = 1    ....(1)
52q=p52q2=p2225q2=p2
p2 is divisible by 2
p is divisible by 2  .....(2)

Let p = 2m, where m is some integer.

∴ 52q=2m
52q2=2m2225q2=4m225q2=2m2
⇒ q2 is divisible by 2
⇒ q is divisible by 2   .....(3)

From (2) and (3), 2 is a common factor of both p and q, which contradicts (1).
Hence, our assumption is wrong.

Thus, 52 is irrational.

Page No 34:

Answer:

 27=27×77=277
​Let 277 is a rational number.

∴ 277=pq, where p and are some integers and HCF(pq) = 1    ....(1)
27q=7p27q2=7p274q2=49p24q2=7p2
⇒ q2 is divisible by 7
⇒ q is divisible by 7  .....(2)

Let q = 7m, where m is some integer.

∴ 27q=7p
277m2=7p23434m2=49p274m2=p2
⇒ p2 is divisible by 7
⇒ p is divisible by 7   .....(3)

From (2) and (3), 7 is a common factor of both p and q, which contradicts (1).
Hence, our assumption is wrong.

Thus, 27 is irrational.

Page No 34:

Answer:

Euclid's division lemma, states that for any two positive integers a and b, there exist unique whole numbers q and r, such that
a = b × q + r where 0 ≤ r < b



Page No 35:

Answer:

The fundamental theorem of arithmetic, states that every integer greater than 1 either is prime itself or is the product of prime numbers, and this product is unique.

Page No 35:

Answer:

Prime factorization:

360 = 23 × 32 × 5

Page No 35:

Answer:

Prime factorization:
a = a
b = b

HCF = product of smallest power of each common prime factor in the numbers = 1

Thus, HCF(ab) = 1

Page No 35:

Answer:

Prime factorization:
a = a
b = b

LCM = product of greatest power of each prime factor involved in the numbers = a × b

Thus, LCM(ab) = ab.

Page No 35:

Answer:

HCF of two numbers = 25
Product of two numbers = 1050
Let their LCM be x.

Using the formula, Product of two numbers = HCF × LCM
we conclude that,

1050 = 25 × x
x105025
   = 42

Hence, their LCM is 42.

Page No 35:

Answer:

A composite number is a positive integer which is not prime (i.e., which has factors other than 1 and itself).

Page No 35:

Answer:

If two numbers are relatively prime then their greatest common factor will be 1.

Thus, HCF(a, b) = 1.

Page No 35:

Answer:

Let x be a rational number whose decimal expansion terminates.
Then, we can express x in the form ab, where a and b are coprime, and prime factorization of b is of the form (2m × 5n), where m and n are non negative integers.

Page No 35:

Answer:

245+32025=23×3×5+32×2×525                        =2×35+3×2525                        =65+6525                        =12525                        =6

Hence, simplified form of 245+32025 is 6.

Page No 35:

Answer:

Decimal expansion:
7324×53=73×524×54              =3652×54              =365104              =36510000              =0.0365

Thus, the decimal expansion of 7324×53 is 0.0365.

Page No 35:

Answer:

We can write:
(2n × 5n) = (2 × 5)n
              = 10n

For any value of n, we get 0 in the end.

Thus, there is no value of n for which (2n × 5n) ends in 5.

Page No 35:

Answer:

​No, it is not possible to have two numbers whose HCF is 25 and LCM is 520.

Since, HCF must be a factor of LCM, but 25 is not a factor of 520.

Page No 35:

Answer:

Let the two irrationals be 4-5 and 4+5.

4-5+4+5=8

​Thus, sum (i.e., 8) is a rational number.

Page No 35:

Answer:

​​Let the two irrationals be 45 and 35.

45×35=60

​Thus, product (i.e., 60) is a rational number.

Page No 35:

Answer:

If two numbers are relatively prime then their greatest common factor will be 1.

∴ HCF(a, b) = 1

Using the formula, Product of two numbers = HCF × LCM
we conclude that,

a × b = 1 × LCM
∴ LCM = ab

Thus, LCM(ab) is ab.

Page No 35:

Answer:

If the LCM of two numbers is 1200 then, it is not possible to have their HCF equals to 500.

Since, HCF must be a factor of LCM, but 500 is not a factor of 1200.

Page No 35:

Answer:

Let x be 0.4¯.

x=0.4¯  .....(1)
Multiplying both sides by 10, we get
10x=4.4¯  .....(2)

Subtracting (1) from (2), we get
10x-x=4.4¯-0.4¯9x=4x=49

Thus, simplest form of 0.4¯ as a rational number is 49.

Page No 35:

Answer:

​Let be 0.23¯.

x=0.23¯  .....(1)
Multiplying both sides by 100, we get
100x=23.23¯  .....(2)

Subtracting (1) from (2), we get
100x-x=23.23¯-0.23¯99x=23x=2399

Thus, simplest form of 0.23¯ as a rational number is 2399.

Page No 35:

Answer:

Irrational numbers are non-terminating non-recurring decimals.

Thus, 0.15015001500015 ... is an irrational number.

Page No 35:

Answer:

Let 23 is a rational number.

∴ 23=pq, where p and q are some integers and HCF(p, q) = 1   ....(1)

2q=3p2q2=3p22q2=9p2
p2 is divisible by 2
⇒ p is divisible by 2   ....(2)

Let p = 2m, where m is some integer.

∴ 2q=3p
2q=3(2m)2q2=3(2m)22q2=49p2q2=29p2
⇒ q2 is divisible by 2
⇒ q is divisible by 2   ....(3)

From (2) and (3), 2 is a common factor of both p and q, which contradicts (1).
Hence, our assumption is wrong.

Thus, 23 is irrational.

Page No 35:

Answer:

Since, 3 = 1.732....
So, we may take 1.8 as the required rational number between 3 and 2.

Thus, the required rational number is 1.8

Page No 35:

Answer:

Since, 3.1416¯ is a non-terminating repeating decimal.

Hence, is a rational number.



Page No 36:

Answer:

The numbers that do not share any common factor other than 1 are called co-primes. 
Clearly in option (b), 
factors of 18 are: 1, 2, 3, 6, 9 and 18
factors of 25 are: 1, 5, 25
The two numbers do not share any common factor other than 1. 
They are co-primes to each other.

Page No 36:

Answer:

(b) 180
It is given that:
a(22 × 33 × 54) and b = (23 × 32 × 5)
∴ HCF (ab) = Product of smallest power of each common prime factor in the numbers
                       = 22 × 32 × 5
                       = 180

Page No 36:

Answer:

(c) 60

HCF = (23 × 32 × 522 × 33 × 5224 ×3 × 53 × 7)
HCF = Product of smallest power of each common prime factor in the numbers
         = 2 2 × 3 × 5
         = 60

Page No 36:

Answer:

(c) 1680

LCM (23 × 3 × 524 × 5 × 7
∴​ LCM = Product of greatest power of each prime factor involved in the numbers
             = 24 × 3 × 5 × 7
             = 16 × 3 × 5 × 7
             = 1680

Page No 36:

Answer:

(d) 81
Let the two numbers be x and y.
It is given that:
x = 54
​HCF = 27
LCM = 162
We know,
  × = HCF × LCM
 54 × y = 27 × 162
   54y4374
         ∴​ y = 437454 = 81

Page No 36:

Answer:

(c) 320
Let the two numbers be and y.
It is given that:
        × y = 1600
          HCF = 5
We know,
                 HCF × LCM = × y
             ⇒       5 × LCM = 1600
             ⇒              ∴  LCM = 16005 = 320
            

Page No 36:

Answer:

(c) 128
Largest number that divides each one of 1152 and 1664 = HCF (1152, 1664)
We know, 
               1152 = 27 × 32
               1164 = 27 × 13
∴ HCF = 27 = 128

Page No 36:

Answer:

(a) 13

We know the required number divides 65 (70 − 5) and 117 (125 − 8).
∴ Required number = HCF (65, 117)
we know,
                65 = 13 × 5
              117 = 13 × 3 × 3
∴ HCF = 13



Page No 37:

Answer:

(b) 16

We know that the required number divides 240 (245 − 5) and 1024 (1029 − 5).
∴ Required number = HCF (240, 1024)
                   240 = 2 × 2 × 2 × 2 × 3 × 5
                 1024 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
∴ HCF = 2 × 2 × 2 × 2 = 16

Page No 37:

Answer:

(d) 1516

10951168 =1095 ÷731168 ÷ 73 = 1516

Hence, HCF of 1095 and 1168 is 73.

Page No 37:

Answer:

(c) 0 ≤ r < b

Euclid's division lemma states that for any positive integers and b, there exist unique integers and such that a = bq + r,
where r​ must satisfy 0 ≤ r < b

Page No 37:

Answer:

(d) 5

We know,
           Dividend = Divisor × Quotient + Remainder.
It is given that:
Divisor = 143
Remainder = 13
So, the given number is in the form of 143x + 31, where x is the quotient.
∴ 143x + 31 = 13 (11x) + (13 × 2) + 5 = 13 (11x + 2) + 5
Thus, the remainder will be 5 when the same number is divided by 13.

Page No 37:

Answer:

(d) 3.141141114...


3.141141114 is an irrational number because it is a non-repeating and non-terminating decimal.

Page No 37:

Answer:

(c) an irrational number

π is an irrational number because it is a non-repeating and non-terminating decimal.

Page No 37:

Answer:

(b) a rational number
       
2.35 is a rational number because it is a repeating decimal.

Page No 37:

Answer:

(c) an irrational number

It is an irrational number because it is a non-terminating and non-repeating decimal.

Page No 37:

Answer:

(b) a rational number

It is a rational number because it is a repeating decimal.

Page No 37:

Answer:

(c) 2027625

 124165=1245 × 33; we know 5 and 33 are not the factors of 124. It is in its simplest form and it cannot be expressed as the product of (2m × 5n) for some non-negative integers m , n.
       
     So, it cannot be expressed as a terminating decimal.


13130 = 1315 × 6; we know 5 and 6 are not the factors of 131. Its is in its simplest form and it cannot be expressed as the product of ( 2m × 5n) for some non-negative integers m , n.
  
   So, it cannot be expressed as a terminating decimal.

 2027625 = 2027 × 2454 × 24 = 3243210000 = 3.2432; as it is of the form (2m × 5n), where m , n are non-negative integers.
  So, it is a terminating decimal.


 1625462 = 16252 × 7 × 33 ; we know 2, 7 and 33 are not the factors of 1625. It is in its simplest form and cannot be expressed as the product of (2m × 5n) for some non-negative integers m,n.
So, it cannot be expressed as a terminating decimal.



Page No 38:

Answer:

(b) two decimal places

3722 × 5 = 37 × 522 × 52 = 185100 = 1.85

So, the decimal expansion of the rational number will terminate after two decimal places.

Page No 38:

Answer:

(d) four decimal places

147531250=  1475354 × 2  = 14753 × 2354 × 24 = 11802410000 = 11.8024

So, the decimal expansion of the number will terminate after four decimal places.

Page No 38:

Answer:

​Clearly, 1.732 is a terminating decimal.

Hence, a rational number.

Hence, the correct answer is option (b).

Page No 38:

Answer:

(a) 2

Since 5 + 3 = 8, the least prime factor of a + b has to be 2, unless a + b is a prime number greater than 2.
If a + b is a prime number greater than 2, then a + must be an odd number. So, either a or b must be an even number. If a is even, then the least prime factor of is 2, which is not 3 or 5. So, neither a nor b can be an even number. Hence, a + b cannot be a prime number greater than 2 if the least prime factor of a is 3 or 5.

Page No 38:

Answer:

Let 2 is a rational number.

∴ 2=pq,  where p and q are some integers and HCF(p, q) = 1    .... (1)
2q=p2q2=p22q2=p2
p2 is divisible by 2
⇒ p is divisible by 2  .... (2)

Let p = 2m, where m is some integer.

∴ 2q=p
2q=2m2q2=2m22q2=4m2q2=2m2
⇒ q2 is divisible by 2
is divisible by 2  .... (3)

From (2) and (3), 2 is a common factor of both p and q, which contradicts (1).
Hence, our assumption is wrong.

Thus, 2 is an irrational number.

Hence, the correct answer is option (b).

Page No 38:

Answer:

(c) an irrational number

12 is an irrational number.

Page No 38:

Answer:

(c) an irrational number

2 + 2 is an irrational number.
if it is rational, then the difference of two rational is rational
∴​ (2 + 2 ) - 2 = 2 = irrational

Page No 38:

Answer:

(c) 2520

We have to find the least number that is divisible by all numbers from 1 to 10.
∴ LCM (1 to 10) =  23 × 32 × 5 × 7 = 2520  
Thus, 2520 is the least number that is divisible by every element and is equal to the least common multiple.



Page No 41:

Answer:

(b) a non-terminating, repeating decimal

71150 = 712 × 3 × 52
We know that 2, 3 or 5 are not factors of 71.
So, it is in its simplest form.
And, (2 × 3 × 52)  ≠ (2m × 5n)
∴  71150  = 0.473¯
 Hence, it is a non-terminating, repeating decimal.

Page No 41:

Answer:

(b) 1980


1980 = 1924 ×5
We know 2 and 5 are not factors of 19, so it is in its simplest form.
And (24 × 5) = (2m × 5n)
Hence, 1980 is a terminating decimal.

Page No 41:

Answer:

(b) 2

Let be the quotient.
It is given that:
remainder = 7
On applying Euclid's algorithm, i.e. dividing by 9, we have
         n = 9q + 7
⇒    3n27q21
⇒ 3n − 1 = 27q20
⇒ 3n − 1 = 9 × 3q× 2 + 2
⇒ 3n − 1 = 9 × (3q + 2) + 2
So, when (3n − 1) is divided by 9, we get the remainder 2.

Page No 41:

Answer:

(b) 1.42

Page No 41:

Answer:

If 4n ends with 0, then it must have 5 as a factor.
But we know the only prime factor of 4n is 2.
Also we know from the fundamental theorem of arithmetic that prime factorisation of each number is unique.
Hence, 4n can never end with the digit 0.



Page No 42:

Answer:

Let the two numbers be x , y.
It is given that:
x = 81
HCF = 27 and  LCM = 162
We know,    Product of two numbers = HCF × LCM
                ⇒                         x × y  = 27 × 162
                ⇒                        81 × y  = 4374
               ⇒                                  y = 437481 = 54
Hence, the other number y is 54.

Page No 42:

Answer:

1730 = 172 × 3 × 5

We know that 2, 3 and 5 are not the factors of 17.
So, 1730 is in its simplest form.
Also, 30 = 2 × 3 × 5 ≠ ( 2m × 5n)
Hence, 1730 is a non-terminating decimal.

Page No 42:

Answer:

148185=148 ÷ 37185 ÷ 37 =45 (∵ HCF of 148 and 185 is 37)

Hence, the simplest form is 45.

Page No 42:

Answer:

(a) 2 is irrational (∵ if p is prime, then p is irrational).

(b) 63 = 23 × 33 is irrational.

(c) 3.142857 is rational because it is a terminating decimal.
           
(d) 2.3 is rational because it is a non-terminating, repeating decimal.

(e) π is irrational because it is a non-repeating, non-terminating decimal.

(f) 227 is rational because it is in the form of pq , q ≠ 0.

(g) 0.232332333...  is irrational because it is a non-terminating, non-repeating decimal.
                 
(h) 5.2741 is rational because it is a non-terminating, repeating decimal.

Page No 42:

Answer:

Let (2 + 3)  be rational.
Then, both (2 + 3) and 2 are rational.
∴ { (2 + 3) - 2 } is rational [∵ Difference of two rational is rational]
⇒ 3 is rational.
This contradicts the fact that 3 is irrational.
The contradiction arises by assuming (2 + 3) is rational.
Hence, (2 + 3) is irrational.

Page No 42:

Answer:

Prime factorisation:
12 = 2 × 2 × 3 = 22 × 3
15 = 3 × 5
18 = 2 × 3 × 3 = 2 × 32
27 = 3 × 3 × 3 = 33
Now,
HCF = Product of smallest power of each common prime factor in the number
         = 3
LCM = Product of greatest power of each prime factor involved in the number
          =  22 × 33 × 5 = 540

Page No 42:

Answer:

Let (2 + 2) and (2 - 2) be two irrational numbers.
Sum = (2 + 2) + (2 - 2) = 2 + 2 + 2 - 2 = 4, which is a rational number.

Page No 42:

Answer:

Prime factorisation:
4620 = 2 × 2 × 3× 5 × 7 × 11  = 22 × 3× 5 × 7 × 11 

Page No 42:

Answer:

Prime factorisation:
1008 = 2 × 2 × 2 × 2 × 3 × 3 × 7 = 24 × 32 × 7
1080 = 2 × 2 × 2 × 3 × 3 × 3 × 5 = 23 × 33 × 5
HCF = Product of  smallest power of each common prime factor in the number
         = 23× 32 = 72

Page No 42:

Answer:

HCF of fractions = HCF of NumeratorsLCM of Denominators

LCM of fractions= LCM of NumeratorsHCF of Denominators
Prime factorisation of the numbers given in the numerators are as follows:
8 = 2 × 2 × 210 = 2 × 516 = 2 × 2 × 2 × 2

HCF of Numerators = 2
LCM of Numerators = 24 × 5 = 80

Prime factorisation of numbers given in the denominators are as follows:
9 = 3 × 327 = 3 × 3 × 381 = 3 × 3 × 3 × 3

HCF of Denominators = 3 × 3 = 9
LCM of Denominators = 34 = 81


∴ HCF of fractions = HCF of NumeratorLCMof Denominator = 281

              ∴ LCMof fractions = LCMof NumeratorHCF of Denominator = 809

Page No 42:

Answer:

We know the required number divides 540 (546 − 6) and 756 (764 − 8), respectively.
∴ Required largest number = HCF (540, 756)
Prime factorisation:
     540 = 2×2×3×3×3×5 = 22×32×5
     756 = 2×2×3×3×3×7 = 22 × 33×7
∴ HCF = 22×33=108
Hence, the largest number is 108.

Page No 42:

Answer:

Let 3 be rational and its simplest form be ab.
Then, a, b are integers with no common factors other than 1 and b ≠ 0.
Now 3 = ab ⇒  3 = a2b2                    [on squaring both sides]
                          ⇒ 3b2 = a2           ... (1)
                       
                         ⇒ 3 divides a2                    [since 3 divides 3b2]
                         ⇒ 3 divides a                     [since 3 is prime, 3 divides a2 ⇒ 3 divides a]
Let a = 3c for some integer c.
Putting a = 3c in equation (1), we get
   3b2 = 9c2 ⇒ b = 3c2
                     ⇒ 3 divides b2               [since 3 divides 3c2]
                    ⇒ 3 divides b                 [since 3 is prime, 3 divides b2 ⇒ 3 divides b]
Thus, 3 is a common factor of both a, b.
But this contradicts the fact that a, b have no common factor other than 1.
The contradiction arises by assuming 3 is rational.
Hence, 3 is rational.

Page No 42:

Answer:

Let be the given positive odd integer.
On dividing a by 4,let q be the quotient and r the remainder.
Therefore,by Euclid's algorithm we have
          a = 4q + r           0 ≤ < 4
⇒      a = 4q + r             r​ = 0,1,2,3
⇒      a = 4qa = 4q1,  a = 4q2,  a = 4q + 3
But, 4q  and  4q + 2 = 2 (2q1) = even
Thus, when is odd, it is of the form (4q + 1) or (4q3) for some integer q.

Page No 42:

Answer:

 Let be quotient and be the remainder.
On applying Euclid's algorithm, i.e. dividing by 3, we have
      n = 3q r       0 ≤ < 3
⇒  n = 3q + r       r = 0, 1 or 2
⇒  n = 3q  or  n = (3q1) or n = (3q2)
Case 1​: If n = 3q, then is divisible by 3.
Case 2: If n = (3q1), then (n + 2) = 3q3 = 3(3q1), which is clearly divisible by 3.
             In this case, (n + 2) is divisible by 3.
Case 3 : If n = (3q2), then (n + 4) = 3q + 6 = 3(q + 2), which is clearly divisible by 3.
              In this case, (n + 4) is divisible by 3.
Hence, one and only one out of n, (+ 1) and (n + 2) is divisible by 3.

Page No 42:

Answer:

Let (4 + 3√2) be a rational number.
Then both (4 + 32) and 4 are rational.
⇒ ( 4 + 32 − 4) = 32 = rational   [∵ Difference of two rational numbers is rational]
⇒ 32 is rational.
⇒ 13 (32) is rational.         [∵ Product of two rational numbers is rational]
⇒ 2 is rational.
This contradicts the fact that 2 is irrational (when 2 is prime, 2 is irrational).
Hence, (4 + 32 ) is irrational.



View NCERT Solutions for all chapters of Class 10